Great Astronomers by Sir Robert Stawell Ball (open ebook txt) 📖
Download in Format:
- Author: Sir Robert Stawell Ball
Book online «Great Astronomers by Sir Robert Stawell Ball (open ebook txt) 📖». Author Sir Robert Stawell Ball
in itself the best of introductions to his favour. It could not be overlooked, and accordingly he invited Laplace to come and see him. Laplace, of course, presented himself, and ere long D'Alembert obtained for the rising philosopher a professorship of mathematics in the Military School in Paris. This gave the brilliant young mathematician the opening for which he sought, and he quickly availed himself of it.
Laplace was twenty-three years old when his first memoir on a profound mathematical subject appeared in the Memoirs of the Academy at Turin. From this time onwards we find him publishing one memoir after another in which he attacks, and in many cases successfully vanquishes, profound difficulties in the application of the Newtonian theory of gravitation to the explanation of the solar system. Like his great contemporary Lagrange, he loftily attempted problems which demanded consummate analytical skill for their solution. The attention of the scientific world thus became riveted on the splendid discoveries which emanated from these two men, each gifted with extraordinary genius.
Laplace's most famous work is, of course, the "Mecanique Celeste," in which he essayed a comprehensive attempt to carry out the principles which Newton had laid down, into much greater detail than Newton had found practicable. The fact was that Newton had not only to construct the theory of gravitation, but he had to invent the mathematical tools, so to speak, by which his theory could be applied to the explanation of the movements of the heavenly bodies. In the course of the century which had elapsed between the time of Newton and the time of Laplace, mathematics had been extensively developed. In particular, that potent instrument called the infinitesimal calculus, which Newton had invented for the investigation of nature, had become so far perfected that Laplace, when he attempted to unravel the movements of the heavenly bodies, found himself provided with a calculus far more efficient than that which had been available to Newton. The purely geometrical methods which Newton employed, though they are admirably adapted for demonstrating in a general way the tendencies of forces and for explaining the more obvious phenomena by which the movements of the heavenly bodies are disturbed, are yet quite inadequate for dealing with the more subtle effects of the Law of Gravitation. The disturbances which one planet exercises upon the rest can only be fully ascertained by the aid of long calculation, and for these calculations analytical methods are required.
With an armament of mathematical methods which had been perfected since the days of Newton by the labours of two or three generations of consummate mathematical inventors, Laplace essayed in the "Mecanique Celeste" to unravel the mysteries of the heavens. It will hardly be disputed that the book which he has produced is one of the most difficult books to understand that has ever been written. In great part, of course, this difficulty arises from the very nature of the subject, and is so far unavoidable. No one need attempt to read the "Mecanique Celeste" who has not been naturally endowed with considerable mathematical aptitude which he has cultivated by years of assiduous study. The critic will also note that there are grave defects in Laplace's method of treatment. The style is often extremely obscure, and the author frequently leaves great gaps in his argument, to the sad discomfiture of his reader. Nor does it mend matters to say, as Laplace often does say, that it is "easy to see" how one step follows from another. Such inferences often present great difficulties even to excellent mathematicians. Tradition indeed tells us that when Laplace had occasion to refer to his own book, it sometimes happened that an argument which he had dismissed with his usual formula, "Il est facile a voir," cost the illustrious author himself an hour or two of hard thinking before he could recover the train of reasoning which had been omitted. But there are certain parts of this great work which have always received the enthusiastic admiration of mathematicians. Laplace has, in fact, created whole tracts of science, some of which have been subsequently developed with much advantage in the prosecution of the study of Nature.
Judged by a modern code the gravest defect of Laplace's great work is rather of a moral than of a mathematical nature. Lagrange and he advanced together in their study of the mechanics of the heavens, at one time perhaps along parallel lines, while at other times they pursued the same problem by almost identical methods. Sometimes the important result was first reached by Lagrange, sometimes it was Laplace who had the good fortune to make the discovery. It would doubtless be a difficult matter to draw the line which should exactly separate the contributions to astronomy made by one of these illustrious mathematicians, and the contributions made by the other. But in his great work Laplace in the loftiest manner disdained to accord more than the very barest recognition to Lagrange, or to any of the other mathematicians, Newton alone excepted, who had advanced our knowledge of the mechanism of the heavens. It would be quite impossible for a student who confined his reading to the "Mecanique Celeste" to gather from any indications that it contains whether the discoveries about which he was reading had been really made by Laplace himself or whether they had not been made by Lagrange, or by Euler, or by Clairaut. With our present standard of morality in such matters, any scientific man who now brought forth a work in which he presumed to ignore in this wholesale fashion the contributions of others to the subject on which he was writing, would be justly censured and bitter controversies would undoubtedly arise. Perhaps we ought not to judge Laplace by the standard of our own time, and in any case I do not doubt that Laplace might have made a plausible defence. It is well known that when two investigators are working at the same subjects, and constantly publishing their results, it sometimes becomes difficult for each investigator himself to distinguish exactly between what he has accomplished and that which must be credited to his rival. Laplace may probably have said to himself that he was going to devote his energies to a great work on the interpretation of Nature, that it would take all his time and all his faculties, and all the resources of knowledge that he could command, to deal justly with the mighty problems before him. He would not allow himself to be distracted by any side issue. He could not tolerate that pages should be wasted in merely discussing to whom we owe each formula, and to whom each deduction from such formula is due. He would rather endeavour to produce as complete a picture as he possibly could of the celestial mechanics, and whether it were by means of his mathematics alone, or whether the discoveries of others may have contributed in any degree to the result, is a matter so infinitesimally insignificant in comparison with the grandeur of his subject that he would altogether neglect it. "If Lagrange should think," Laplace might say, "that his discoveries had been unduly appropriated, the proper course would be for him to do exactly what I have done. Let him also write a "Mecanique Celeste," let him employ those consummate talents which he possesses in developing his noble subject to the utmost. Let him utilise every result that I or any other mathematician have arrived at, but not trouble himself unduly with unimportant historical details as to who discovered this, and who discovered that; let him produce such a work as he could write, and I shall heartily welcome it as a splendid contribution to our science." Certain it is that Laplace and Lagrange continued the best of friends, and on the death of the latter it was Laplace who was summoned to deliver the funeral oration at the grave of his great rival.
The investigations of Laplace are, generally speaking, of too technical a character to make it possible to set forth any account of them in such a work as the present. He did publish, however, one treatise, called the "Systeme du Monde," in which, without introducing mathematical symbols, he was able to give a general account of the theories of the celestial movements, and of the discoveries to which he and others had been led. In this work the great French astronomer sketched for the first time that remarkable doctrine by which his name is probably most generally known to those readers of astronomical books who are not specially mathematicians. It is in the "Systeme du Monde" that Laplace laid down the principles of the Nebular Theory which, in modern days, has been generally accepted by those philosophers who are competent to judge, as substantially a correct expression of a great historical fact.
The Nebular Theory gives a physical account of the origin of the solar system, consisting of the sun in the centre, with the planets and their attendant satellites. Laplace perceived the significance of the fact that all the planets revolved in the same direction around the sun; he noticed also that the movements of rotation of the planets on their axes were performed in the same direction as that in which a planet revolves around the sun; he saw that the orbits of the satellites, so far at least as he knew them, revolved around their primaries also in the same direction. Nor did it escape his attention that the sun itself rotated on its axis in the same sense. His philosophical mind was led to reflect that such a remarkable unanimity in the direction of the movements in the solar system demanded some special explanation. It would have been in the highest degree improbable that there should have been this unanimity unless there had been some physical reason to account for it. To appreciate the argument let us first concentrate our attention on three particular bodies, namely the earth, the sun, and the moon. First the earth revolves around the sun in a certain direction, and the earth also rotates on its axis. The direction in which the earth turns in accordance with this latter movement might have been that in which it revolves around the sun, or it might of course have been opposite thereto. As a matter of fact the two agree. The moon in its monthly revolution around the earth follows also the same direction, and our satellite rotates on its axis in the same period as its monthly revolution, but in doing so is again observing this same law. We have therefore in the earth and moon four movements, all taking place in the same direction, and this is also identical with that in which the sun rotates once every twenty-five days. Such a coincidence would be very unlikely unless there were some physical reason for it. Just as unlikely would it be that in tossing a coin five heads or five tails should follow each other consecutively. If we toss a coin five times the chances that it will turn up all heads or all tails is but a small one. The probability of such an event is only one-sixteenth.
There are, however, in the solar system many other bodies besides the three just mentioned which are animated by this common movement. Among them are, of course, the great planets, Jupiter, Saturn, Mars, Venus, and Mercury, and the satellites which attend on these planets. All these planets rotate on their axes in the same direction as they revolve around the sun, and all
Laplace was twenty-three years old when his first memoir on a profound mathematical subject appeared in the Memoirs of the Academy at Turin. From this time onwards we find him publishing one memoir after another in which he attacks, and in many cases successfully vanquishes, profound difficulties in the application of the Newtonian theory of gravitation to the explanation of the solar system. Like his great contemporary Lagrange, he loftily attempted problems which demanded consummate analytical skill for their solution. The attention of the scientific world thus became riveted on the splendid discoveries which emanated from these two men, each gifted with extraordinary genius.
Laplace's most famous work is, of course, the "Mecanique Celeste," in which he essayed a comprehensive attempt to carry out the principles which Newton had laid down, into much greater detail than Newton had found practicable. The fact was that Newton had not only to construct the theory of gravitation, but he had to invent the mathematical tools, so to speak, by which his theory could be applied to the explanation of the movements of the heavenly bodies. In the course of the century which had elapsed between the time of Newton and the time of Laplace, mathematics had been extensively developed. In particular, that potent instrument called the infinitesimal calculus, which Newton had invented for the investigation of nature, had become so far perfected that Laplace, when he attempted to unravel the movements of the heavenly bodies, found himself provided with a calculus far more efficient than that which had been available to Newton. The purely geometrical methods which Newton employed, though they are admirably adapted for demonstrating in a general way the tendencies of forces and for explaining the more obvious phenomena by which the movements of the heavenly bodies are disturbed, are yet quite inadequate for dealing with the more subtle effects of the Law of Gravitation. The disturbances which one planet exercises upon the rest can only be fully ascertained by the aid of long calculation, and for these calculations analytical methods are required.
With an armament of mathematical methods which had been perfected since the days of Newton by the labours of two or three generations of consummate mathematical inventors, Laplace essayed in the "Mecanique Celeste" to unravel the mysteries of the heavens. It will hardly be disputed that the book which he has produced is one of the most difficult books to understand that has ever been written. In great part, of course, this difficulty arises from the very nature of the subject, and is so far unavoidable. No one need attempt to read the "Mecanique Celeste" who has not been naturally endowed with considerable mathematical aptitude which he has cultivated by years of assiduous study. The critic will also note that there are grave defects in Laplace's method of treatment. The style is often extremely obscure, and the author frequently leaves great gaps in his argument, to the sad discomfiture of his reader. Nor does it mend matters to say, as Laplace often does say, that it is "easy to see" how one step follows from another. Such inferences often present great difficulties even to excellent mathematicians. Tradition indeed tells us that when Laplace had occasion to refer to his own book, it sometimes happened that an argument which he had dismissed with his usual formula, "Il est facile a voir," cost the illustrious author himself an hour or two of hard thinking before he could recover the train of reasoning which had been omitted. But there are certain parts of this great work which have always received the enthusiastic admiration of mathematicians. Laplace has, in fact, created whole tracts of science, some of which have been subsequently developed with much advantage in the prosecution of the study of Nature.
Judged by a modern code the gravest defect of Laplace's great work is rather of a moral than of a mathematical nature. Lagrange and he advanced together in their study of the mechanics of the heavens, at one time perhaps along parallel lines, while at other times they pursued the same problem by almost identical methods. Sometimes the important result was first reached by Lagrange, sometimes it was Laplace who had the good fortune to make the discovery. It would doubtless be a difficult matter to draw the line which should exactly separate the contributions to astronomy made by one of these illustrious mathematicians, and the contributions made by the other. But in his great work Laplace in the loftiest manner disdained to accord more than the very barest recognition to Lagrange, or to any of the other mathematicians, Newton alone excepted, who had advanced our knowledge of the mechanism of the heavens. It would be quite impossible for a student who confined his reading to the "Mecanique Celeste" to gather from any indications that it contains whether the discoveries about which he was reading had been really made by Laplace himself or whether they had not been made by Lagrange, or by Euler, or by Clairaut. With our present standard of morality in such matters, any scientific man who now brought forth a work in which he presumed to ignore in this wholesale fashion the contributions of others to the subject on which he was writing, would be justly censured and bitter controversies would undoubtedly arise. Perhaps we ought not to judge Laplace by the standard of our own time, and in any case I do not doubt that Laplace might have made a plausible defence. It is well known that when two investigators are working at the same subjects, and constantly publishing their results, it sometimes becomes difficult for each investigator himself to distinguish exactly between what he has accomplished and that which must be credited to his rival. Laplace may probably have said to himself that he was going to devote his energies to a great work on the interpretation of Nature, that it would take all his time and all his faculties, and all the resources of knowledge that he could command, to deal justly with the mighty problems before him. He would not allow himself to be distracted by any side issue. He could not tolerate that pages should be wasted in merely discussing to whom we owe each formula, and to whom each deduction from such formula is due. He would rather endeavour to produce as complete a picture as he possibly could of the celestial mechanics, and whether it were by means of his mathematics alone, or whether the discoveries of others may have contributed in any degree to the result, is a matter so infinitesimally insignificant in comparison with the grandeur of his subject that he would altogether neglect it. "If Lagrange should think," Laplace might say, "that his discoveries had been unduly appropriated, the proper course would be for him to do exactly what I have done. Let him also write a "Mecanique Celeste," let him employ those consummate talents which he possesses in developing his noble subject to the utmost. Let him utilise every result that I or any other mathematician have arrived at, but not trouble himself unduly with unimportant historical details as to who discovered this, and who discovered that; let him produce such a work as he could write, and I shall heartily welcome it as a splendid contribution to our science." Certain it is that Laplace and Lagrange continued the best of friends, and on the death of the latter it was Laplace who was summoned to deliver the funeral oration at the grave of his great rival.
The investigations of Laplace are, generally speaking, of too technical a character to make it possible to set forth any account of them in such a work as the present. He did publish, however, one treatise, called the "Systeme du Monde," in which, without introducing mathematical symbols, he was able to give a general account of the theories of the celestial movements, and of the discoveries to which he and others had been led. In this work the great French astronomer sketched for the first time that remarkable doctrine by which his name is probably most generally known to those readers of astronomical books who are not specially mathematicians. It is in the "Systeme du Monde" that Laplace laid down the principles of the Nebular Theory which, in modern days, has been generally accepted by those philosophers who are competent to judge, as substantially a correct expression of a great historical fact.
The Nebular Theory gives a physical account of the origin of the solar system, consisting of the sun in the centre, with the planets and their attendant satellites. Laplace perceived the significance of the fact that all the planets revolved in the same direction around the sun; he noticed also that the movements of rotation of the planets on their axes were performed in the same direction as that in which a planet revolves around the sun; he saw that the orbits of the satellites, so far at least as he knew them, revolved around their primaries also in the same direction. Nor did it escape his attention that the sun itself rotated on its axis in the same sense. His philosophical mind was led to reflect that such a remarkable unanimity in the direction of the movements in the solar system demanded some special explanation. It would have been in the highest degree improbable that there should have been this unanimity unless there had been some physical reason to account for it. To appreciate the argument let us first concentrate our attention on three particular bodies, namely the earth, the sun, and the moon. First the earth revolves around the sun in a certain direction, and the earth also rotates on its axis. The direction in which the earth turns in accordance with this latter movement might have been that in which it revolves around the sun, or it might of course have been opposite thereto. As a matter of fact the two agree. The moon in its monthly revolution around the earth follows also the same direction, and our satellite rotates on its axis in the same period as its monthly revolution, but in doing so is again observing this same law. We have therefore in the earth and moon four movements, all taking place in the same direction, and this is also identical with that in which the sun rotates once every twenty-five days. Such a coincidence would be very unlikely unless there were some physical reason for it. Just as unlikely would it be that in tossing a coin five heads or five tails should follow each other consecutively. If we toss a coin five times the chances that it will turn up all heads or all tails is but a small one. The probability of such an event is only one-sixteenth.
There are, however, in the solar system many other bodies besides the three just mentioned which are animated by this common movement. Among them are, of course, the great planets, Jupiter, Saturn, Mars, Venus, and Mercury, and the satellites which attend on these planets. All these planets rotate on their axes in the same direction as they revolve around the sun, and all
Free ebook «Great Astronomers by Sir Robert Stawell Ball (open ebook txt) 📖» - read online now
Similar e-books:
Comments (0)