Pedagogical Anthropology by Maria Montessori (new books to read .TXT) 📖
- Author: Maria Montessori
- Performer: -
Book online «Pedagogical Anthropology by Maria Montessori (new books to read .TXT) 📖». Author Maria Montessori
No single measurement can express the form; the weight of the body, indeed, may give us a conception of the mass but not of the shape; and the latter, if it needs to be determined in all its limits, requires a series of measurements, mutually related, and signifying the reciprocal connection and harmony of the parts with the whole; in other words, a law. We may establish the following measurements as adapted to determine the form, in other words, as fundamental laws: the total stature, the sitting stature, the total spread of the arms, the circumference of the thorax, and the weight. Of these measures, the two of chief importance are the stature and the weight, because they express the linear index and the volumetric measure of the entire body. The other measurements, on the contrary, analyse this entirety in a sweeping way: thus, the sitting stature, in its relation to the total stature, indicates the reciprocal proportions between the bust and the lower limbs; the perimeter of the chest records the transverse and volumetric development of the bust; and the total spread of the arms denotes a detail that is highly characteristic in the case of man: the development of the upper limbs, which, while they correspond to organs of locomotion in the lower animals, assume in the case of man higher functions, as organs of labour and of mimic speech.
Such measurements constitute a law, because they are in constant mutual relationship, when the normal human organism has reached complete development. The stature, in fact, is equal to the total spread of the arms; the circumference of the thorax is equal to one-half the stature, and the sitting stature is slightly greater than the perimeter of the chest. As regards the weight, it cannot be in direct proportion to any linear measure; nevertheless, an empirical correspondence in figures has been noted that may be recorded solely for the purpose of aiding the memory: the normal adult man usually weighs as many kilograms as there are centimetres in his stature, over and above one metre (for instance, a man whose height is 1.60 metres will weigh 60 kilograms, etc.).
To make these laws easier to understand, we may resort to signs and formulæ. Thus, if we denote the stature by St, the total spread of the arms by Ts, the circumference of the thorax by Ct, the essential or sitting stature by Ss, and the weight by W, we may set down the following formulæ, which will result in practice in more or less obvious approximations:
St = Ts; Ct = St/2; Ct = Ss
And for the weight, the following wholly empirical formula:
W = Kg(St-1 m.).
Stature.—Among all the measurements relating to the form, the principal one is the stature. It has certain characteristics that are essentially human. What we understand by stature is the height of a living animal, when standing on its feet. Let us compare the stature of one of the higher mammals, a dog for instance, with that of man. The stature of the dog is determined essentially by the length of its legs, while the spinal column is supported in a horizontal position by the legs themselves. Such is the attitude of all the higher mammals, including the greater number of monkeys, notwithstanding that these latter are steadily tending to raise their spinal column in an oblique direction, in proportion to the lengthening of their forelimbs, which serve them as a support in walking—a form of locomotion half way between that of quadrupeds and of man. Man alone has permanently acquired an erect position, that renders the bust ( = sum of head and trunk) vertical, and leaves the upper limbs definitely free from any duty connected with locomotion, thus attaining the full measure of the human stature, which is the sum of the bust and the lower limbs. Thus, we may assert that one fundamental difference between man and animals consists in this: that in animals the spinal column does not enter into the computation of stature; while in man, on the contrary, it is included in its entirety. Consequently, in man the stature assumes a characteristic and fundamental importance, because part of it (that part relating to the bust) represents, as a linear index, all the organs of vegetative life and of life in its external relations.
If we examine the human skeleton in an erect position (Fig. 9), it shows us the varying importance of the different parts of its structure, according as they are destined to protect, or simply to sustain. At the top is the skull, an enclosed bony cavity; and this arrangement indicates that it is designed to contain and protect an organ of the highest importance. By means of the occipital foramen, this cavity communicates with the vertebral canal, also rigorously closed, that is formed by the successive juxtaposition of the vertebræ. Such protective formation is in accord with the high physiological significance and the delicate structure of the organs of the central nervous system, which represent the supreme control over physiological life and over the psychic activities of life in its external relations. Below the skull, the structure of the skeleton is profoundly altered; in fact, the framework of the thorax is a sort of bony cage open at the bottom; still, the external arrangement of the bones renders them highly protective to the organs they enclose, namely, the lungs and the heart—physiological centres, whose perpetual motion seems to symbolise the rhythm and consequently the continuity of life.
Fig. 9.
Continuing to descend, we come to a sort of hollow basin, the pelvis, which seems merely to contain, rather than protect, the abdominal organs: the intestines, kidneys, etc. Such a structure seems to be in accord with the minor physiological importance of these organs, whose function (digestion) is periodic and may be temporarily suspended, in defiance of physiological stimuli, without suspension of life. In the lower part of the skeleton, on the contrary, the arrangement between the soft and bony tissues is inverted: the long bones of the limbs constitute the inner part; and they are covered over with thick, striped muscles, organs of mechanical movement for the purpose of locomotion. Here the function of the skeleton is exclusively that of support, and in its mechanism it represents a series of levers.
Accordingly, the structure of the skeleton also shows us how the stature is composed of parts that differ profoundly in their physiological significance; life as a complete whole, the living man, is contained within the bust, which holds the organs of the individual, vegetative life; those of life in relation to its environment, and those of life in relation to the race, namely, the organs of reproduction.
Deprived of arms and legs, man could still live; the limbs are nothing more than appendages at the service of the bust, in all animals; they serve to transport the bust, that is, the part which constitutes the real living animal, which without the limbs would be as motionless as a vegetable, unable to go in pursuit of nourishment or to exercise sexual selection.
The embryos of different animals, of a dog, a bat, a rabbit and of man (as may be seen in Fig. 11) show that the fundamental part of the body is the spinal column, which limits and includes the whole animal in the process of formation.
If we next examine the embryonic development of man, as shown in Fig. 13, we may easily see how the limbs develop, at first as almost insignificant appendages of the trunk, remaining hidden within the curve of the spinal column; and even in an advanced stage of development (15th week), they still remain quite accessory parts in their relation to the whole.
Having established these very obvious principles, we may ask ourselves: of two men of equal stature, which is physiologically the more efficient? Evidently, that one of the two who has the shorter legs.
In other words, it is of fundamental importance to determine the reciprocal relation, in the stature, between the bust and the lower limbs, that is, between the height of the bust and the total height of the body.
Fig. 10.—Gastrula of a sponge.
External surface. Internal section.
(Showing the inner and outer primary layers, and the mouth orifice.)
Fig. 11.
Dog. Bat. Rabbit. Man.
(From the work by E. Haeckel: Anthropogeny.)
Fig. 12.
Four skeletons of anthropoid apes. Man.
The height of the bust was called by Collignon the essential stature, a name that indicates the biological significance of this measurement. It may, however, also be called the sitting stature, from the method of taking the measure, which equals the vertical distance from the level on which the individual is seated to the top of his head. The other is the total stature.
Fig. 13.
14 days, 3 weeks, 4 weeks, etc. (natural size).
Accordingly, in anthropology we may define the physiological efficiency of a man by the relation existing between his two statures, the total and the essential. If we reduce the total stature (which for the sake of brevity we will call simply the stature) to a scale of 100, we find that the essential stature very slightly exceeds 50, oscillating between 53-54; yet it may fall to 47 and even lower, or it may rise above 56. In such cases we have individuals of profoundly diverse types, whose diversity is essentially connected with the proportional differences between the several parts of their stature.
Hence, we may distinguish the type of stature; understanding by this, not a measure, but a ratio between measures, expressed by a number; that is, "the type of stature is the name given to the ratio between the essential stature and the total stature reduced to a scale of 100." The number resulting from this ratio, since it indicates the ratio itself, is called the index of stature (See "Technical Lessons: on the Manner of Obtaining and Calculating the Indexes"). Manouvrier has distinguished the type with short limbs and preponderant trunk, by the name of brachyscelous; and those of the opposite type, that is, with long legs, by the name of macroscelous; reserving the term mesatiscelous to designate the intermediate type.
These types differ not only in the reciprocal relation between the two statures, but in all the recognised laws of the form. The brachyscelous type has a circumference of chest in excess of half the stature, because the trunk is more greatly developed in all its dimensions; and the total weight of the body exceeds the normal proportion in relation to the stature. The contrary holds true of the macroscelous type; their trunk, being shorter, is also narrower, and the circumference of the chest can never equal one-half the stature, while the total weight of the body is below the normal.
Canons of FormPassing next to a consideration of the total spread of the arms, since there is an evident correspondence between the upper and lower limbs, it follows that in the brachyscelous type the total spread is less than the stature, while in the macroscelous it surpasses it to a greater or less degree, according to the grade of type; the two types consequently differ in the level reached by the wrist, when the arms are allowed to hang along the sides of the body.
This is a very interesting fact to establish, since at one time it was held that excessive length of arm was an atavistic feature, in other words, an anthropoid reminder. To-day, since the old interpretation of the direct descent from species to species has been abandoned in
Comments (0)