Literary Collections
Read books online » Literary Collections » Time and Tide by Sir Robert Stawell Ball (read with me txt) 📖

Book online «Time and Tide by Sir Robert Stawell Ball (read with me txt) 📖». Author Sir Robert Stawell Ball



1 ... 4 5 6 7 8 9 10 11 12 ... 19
Go to page:
the further back our view extends; in fact, concentrating our attention solely on essential features, we may say that the path of the moon is a sort of spiral which winds round and round the earth, gradually getting larger, though with extreme slowness. Looking back we see this spiral gradually coiling in and in, until in a retrospect of millions of years, instead of its distance from the earth being 240,000 miles, it must have been much less. There was a time when the moon was only 200,000 miles away; there was a time many millions of years ago, when the moon was only 100,000 miles away. Nor can we here stop our retrospect; we must look further and further back, and follow the moon's spiral path as it creeps in and in towards the earth, until at last it appears actually in contact with that great globe of ours, from which it is now separated by a quarter of a million of miles.

Surely the tides have thus led us to the knowledge of an astounding epoch in our earth's past history, when the earth is spinning round in a few hours, and when the moon is, practically speaking, in contact with it. Perhaps I should rather say, that the materials of our present moon were in this situation, for we would hardly be entitled to assume that the moon then possessed the same globular form in which we see it now. To form a just apprehension of the true nature of both bodies at this critical epoch, we must study their concurrent history as it is disclosed to us by a totally different line of reasoning.

Drop, then, for a moment all thought of tides, and let us bring to our aid the laws of heat, which will disclose certain facts in the ancient history of the earth-moon system perhaps as astounding as those to which the tides have conducted us. In one respect we may compare these laws of heat with the laws of the tides; they are both alike non-periodic, their effects are cumulative from age to age, and imagination can hardly even impose a limit to the magnificence of the works they can accomplish. Our argument from heat is founded on a very simple matter. It is quite obvious that a heated body tends to grow cold. I am not now speaking of fires or of actual combustion whereby heat is produced; I am speaking merely of such heat as would be possessed by a red-hot poker after being taken from the fire, or by an iron casting after the metal has been run into the mould. In such cases as this the general law holds good, that the heated body tends to grow cold. The cooling may be retarded no doubt if the passage of heat from the body is impeded. We can, for instance, retard the cooling of a teapot by the well-known practice of putting a cosy upon it; but the law remains that, slowly or quickly, the heated body will tend to grow colder. It seems almost puerile to insist with any emphasis on a point so obvious as this, but yet I frequently find that people do not readily apprehend all the gigantic consequences that can flow from a principle so simple. It is true that a poker cools when taken from the fire; we also find that a gigantic casting weighing many tons will grow gradually cold, though it may require days to do so. The same principle will extend to any object, no matter how vast it may happen to be. Were that great casting 2000 miles in diameter, or were it 8000 miles in diameter, it will still steadily part with its heat, though no doubt the process of cooling becomes greatly prolonged with an increase in the dimensions of the heated body. The earth and the moon cannot escape from the application of these simple principles.

Let us first speak of the earth. There are multitudes of volcanoes in action at the present moment in various countries upon this earth. Now whatever explanation may be given of the approximate cause of the volcanic phenomena, there can be no doubt that they indicate the existence of heat in the interior of the earth. It may possibly be, as some have urged, that the volcanoes are merely vents for comparatively small masses of subterranean molten matter; it may be, as others more reasonably, in my opinion, believe, that the whole interior of the earth is at the temperature of incandescence, and that the eruptions of volcanoes and the shocks of earthquakes are merely consequences of the gradual shrinkage of the external crust, as it continually strives to accommodate itself to the lessening bulk of the fluid interior. But whichever view we may adopt, it is at least obvious that the earth is in part, at all events, a heated body, and that the heat is not in the nature of a combustion, generated and sustained by the progress of chemical action. No doubt there may be local phenomena of this description, but by far the larger proportion of the earth's internal heat seems merely the fervour of incandescence. It is to be likened to the heat of the molten iron which has been run into the sand, rather than to the glowing coals in the furnace in which that iron has been smelted.

There is one volcanic outbreak of such exceptional interest in these modern times that I cannot refrain from alluding to it. Doubtless every one has heard of that marvellous eruption of Krakatoa, which occurred on August 26th and 27th, 1883, and gives a unique chapter in the history of volcanic phenomena. Not alone was the eruption of Krakatoa alarming in its more ordinary manifestations, but it was unparalleled both in the vehemence of the shock and in the distance to which the effects of the great eruption were propagated. I speak not now of the great waves of ocean that inundated the coasts of Sumatra and Java, and swept away thirty-six thousand people, nor do I allude to the intense darkness which spread for one hundred and eighty miles or more all round. I shall just mention the three most important phenomena, which demonstrate the energy which still resides in the interior of our earth. Place a terrestrial globe before you, and fix your attention on the Straits of Sunda; think also of the great atmospheric ocean some two or three hundred miles deep which envelopes our earth. When a pebble is tossed into a pond a beautiful series of concentric ripples diverge from it; so when Krakatoa burst up in that mighty catastrophe, a series of gigantic waves were propagated through the air; they embraced the whole globe, converged to the antipodes of Krakatoa, thence again diverged, and returned to the seat of the volcano; a second time the mighty series of atmospheric ripples spread to the antipodes, and a second time returned. Seven times did that series of waves course over our globe, and leave their traces on every self-recording barometer that our earth possesses. Thirty-six hours were occupied in the journey of the great undulation from Krakatoa to its antipodes. Perhaps even more striking was the extent of our earth's surface over which the noise of the great explosion spread. At Batavia, ninety-four miles away, the concussions were simply deafening; at Macassar, in Celebes, two steamers were sent out to investigate the explosions which were heard, little thinking that they came from Krakatoa, nine hundred and sixty-nine miles away. Alarming sounds were heard over the island of Timor, one thousand three hundred and fifty-one miles away from Krakatoa. Diego Garcia in the Chogos islands is two thousand two hundred and sixty-seven miles from Krakatoa, but the thunders traversed even this distance, and were attributed to some ship in distress, for which a search was made. Most astounding of all, there is undoubted evidence that the sound of the mighty explosion was propagated across nearly the entire Indian ocean, and was heard in the island of Rodriguez, almost three thousand miles away. The immense distance over which this sound journeyed will be appreciated by the fact, that the noise did not reach Rodriguez until four hours after it had left Krakatoa. In fact, it would seem that if Vesuvius were to explode with the same vehemence as Krakatoa did, the thunders of the explosion might penetrate so far as to be heard in London.

There is another and more beautiful manifestation of the world-wide significance of the Krakatoa outbreak. The vast column of smoke and ashes ascended twenty miles high in the air, and commenced a series of voyages around the equatorial regions of the earth. In three days it crossed the Indian ocean, and was traversing equatorial Africa; then came an Atlantic voyage; and then it coursed over central America, before a Pacific voyage brought it back to its point of departure after thirteen days; then the dust started again, and was traced around another similar circuit, while it was even tracked for a considerable time in placing the third girdle round the earth. Strange blue suns and green moons and other mysterious phenomena marked the progress of this vast volcanic cloud. At last the cloud began to lose its density, the dust spread more widely over the tropics, became diffused through the temperate regions, and then the whole earth was able to participate in the glories of Krakatoa. The marvellous sunsets in the autumn of 1883 are attributable to this cause; and thus once again was brought before us the fact that the earth still contains large stores of thermal energy.

Attempts are sometimes made to explain volcanic phenomena on the supposition that they are entirely of a local character, and that we are not entitled to infer the incandescent nature of the earth's interior from the fact that volcanic outbreaks occasionally happen. For our present purpose this point is immaterial, though I must say it appears to me unreasonable to deny that the interior of the earth is in a most highly heated state. Every test we can apply shows us the existence of internal heat. Setting aside the more colossal phenomena of volcanic eruptions, we have innumerable minor manifestations of its presence. Are there not geysers and hot springs in many parts of the earth? and have we not all over our globe invariable testimony confirming the statement, that the deeper we go down beneath its surface the hotter does the temperature become? Every miner is familiar with these facts; he knows that the deeper are his shafts the warmer it is down below, and the greater the necessity for providing increased ventilation to keep the temperature within a limit that shall be suitable for the workmen. All these varied classes of phenomena admit solely of one explanation, and that is, that the interior of the earth contains vast stores of incandescent heat.

We now apply to our earth the same reasoning which we should employ on a poker taken from the fire, or on a casting drawn from the foundry. Such bodies will lose their heat by radiation and conduction. The earth is therefore losing its heat. No doubt the process is an extremely slow one. The mighty reservoirs of internal heat are covered by vast layers of rock, which are such excellent non-conductors that they offer every possible impediment to the leakage of heat from the interior to the surface. We coat our steam-pipes over with non-conducting material, and this can now be done so successfully, that it is beginning to be found economical to transmit steam for a very long distance through properly protected pipes. But no non-conducting material that we can manufacture can be half so effective as the shell of rock twenty miles or more in thickness, which secures the heated interior of the earth from rapid
1 ... 4 5 6 7 8 9 10 11 12 ... 19
Go to page:

Free ebook «Time and Tide by Sir Robert Stawell Ball (read with me txt) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment