The Hacker's Dictionary by - (romantic novels to read TXT) 📖
- Author: -
- Performer: 0262680920
Book online «The Hacker's Dictionary by - (romantic novels to read TXT) 📖». Author -
I still have that switch in my basement. Maybe I'm silly, but I usually keep it set on `more magic'.
:A Selection of AI Koans:
=========================
These are some of the funniest examples of a genre of jokes told at the MIT AI Lab about various noted hackers. The original koans were composed by Danny Hillis. In reading these, it is at least useful to know that Minsky, Sussman, and Drescher are AI researchers of note, that Tom Knight was one of the Lisp machine's principal designers, and that David Moon wrote much of Lisp machine Lisp.
* * *A novice was trying to fix a broken Lisp machine by turning the power off and on.
Knight, seeing what the student was doing, spoke sternly: "You cannot fix a machine by just power-cycling it with no understanding of what is going wrong."
Knight turned the machine off and on.
The machine worked.
* * *One day a student came to Moon and said: "I understand how to make a better garbage collector. We must keep a reference count of the pointers to each cons."
Moon patiently told the student the following story: "One day a student came to Moon and said: `I understand how to make a better garbage collector...
[Ed. note: Pure reference-count garbage collectors have problems with circular structures that point to themselves.]
* * *In the days when Sussman was a novice, Minsky once came to him as he sat hacking at the PDP-6.
"What are you doing?", asked Minsky.
"I am training a randomly wired neural net to play Tic-Tac-Toe"
Sussman replied.
"Why is the net wired randomly?", asked Minsky.
"I do not want it to have any preconceptions of how to play", Sussman said.
Minsky then shut his eyes.
"Why do you close your eyes?", Sussman asked his teacher.
"So that the room will be empty."
At that moment, Sussman was enlightened.
* * *A disciple of another sect once came to Drescher as he was eating his morning meal.
"I would like to give you this personality test", said the outsider, "because I want you to be happy."
Drescher took the paper that was offered him and put it into the toaster, saying: "I wish the toaster to be happy, too."
:OS and JEDGAR:
===============
This story says a lot about the the ITS ethos.
On the ITS system there was a program that allowed you to see what was being printed on someone else's terminal. It spied on the other guy's output by examining the insides of the monitor system. The output spy program was called OS. Throughout the rest of the computer science (and at IBM too) OS means operating system', but among old-time ITS hackers it almost always meantoutput spy'.
OS could work because ITS purposely had very little in the way of protection' that prevented one user from trespassing on another's areas. Fair is fair, however. There was another program that would automatically notify you if anyone started to spy on your output. It worked in exactly the same way, by looking at the insides of the operating system to see if anyone else was looking at the insides that had to do with your output. Thiscounterspy' program was called JEDGAR
(a six-letterism pronounced as two syllables: /jed'gr/), in honor of the former head of the FBI.
But there's more. JEDGAR would ask the user for `license to kill'. If the user said yes, then JEDGAR would actually {gun} the job of the {luser} who was spying. Unfortunately, people found that this made life too violent, especially when tourists learned about it. One of the systems hackers solved the problem by replacing JEDGAR with another program that only pretended to do its job. It took a long time to do this, because every copy of JEDGAR had to be patched. To this day no one knows how many people never figured out that JEDGAR had been defanged.
:The Story of Mel, a Real Programmer:
=====================================
This was posted to USENET by its author, Ed Nather (utastro!nather), on May 21, 1983.
A recent article devoted to the *macho* side of programming made the bald and unvarnished statement: Real Programmers write in FORTRAN. Maybe they do now, in this decadent era of Lite beer, hand calculators, and "user-friendly" software but back in the Good Old Days, when the term "software" sounded funny and Real Computers were made out of drums and vacuum tubes, Real Programmers wrote in machine code. Not FORTRAN. Not RATFOR. Not, even, assembly language. Machine Code. Raw, unadorned, inscrutable hexadecimal numbers. Directly. Lest a whole new generation of programmers grow up in ignorance of this glorious past, I feel duty-bound to describe, as best I can through the generation gap, how a Real Programmer wrote code. I'll call him Mel, because that was his name. I first met Mel when I went to work for Royal McBee Computer Corp., a now-defunct subsidiary of the typewriter company. The firm manufactured the LGP-30, a small, cheap (by the standards of the day) drum-memory computer, and had just started to manufacture the RPC-4000, a much-improved, bigger, better, faster --- drum-memory computer. Cores cost too much, and weren't here to stay, anyway. (That's why you haven't heard of the company, or the computer.) I had been hired to write a FORTRAN compiler for this new marvel and Mel was my guide to its wonders. Mel didn't approve of compilers. "If a program can't rewrite its own code", he asked, "what good is it?" Mel had written, in hexadecimal, the most popular computer program the company owned. It ran on the LGP-30 and played blackjack with potential customers at computer shows. Its effect was always dramatic. The LGP-30 booth was packed at every show, and the IBM salesmen stood around talking to each other. Whether or not this actually sold computers was a question we never discussed. Mel's job was to re-write the blackjack program for the RPC-4000. (Port? What does that mean?) The new computer had a one-plus-one addressing scheme, in which each machine instruction, in addition to the operation code and the address of the needed operand, had a second address that indicated where, on the revolving drum, the next instruction was located. In modern parlance, every single instruction was followed by a GO TO! Put *that* in Pascal's pipe and smoke it. Mel loved the RPC-4000 because he could optimize his code: that is, locate instructions on the drum so that just as one finished its job, the next would be just arriving at the "read head" and available for immediate execution. There was a program to do that job, an "optimizing assembler", but Mel refused to use it. "You never know where it's going to put things", he explained, "so you'd have to use separate constants". It was a long time before I understood that remark. Since Mel knew the numerical value of every operation code, and assigned his own drum addresses, every instruction he wrote could also be considered a numerical constant. He could pick up an earlier "add" instruction, say, and multiply by it, if it had the right numeric value. His code was not easy for someone else to modify. I compared Mel's hand-optimized programs with the same code massaged by the optimizing assembler program, and Mel's always ran faster. That was because the "top-down" method of program design hadn't been invented yet, and Mel wouldn't have used it anyway. He wrote the innermost parts of his program loops first, so they would get first choice of the optimum address locations on the drum. The optimizing assembler wasn't smart enough to do it that way. Mel never wrote time-delay loops, either, even when the balky Flexowriter required a delay between output characters to work right. He just located instructions on the drum so each successive one was just *past* the read head when it was needed; the drum had to execute another complete revolution to find the next instruction. He coined an unforgettable term for this procedure. Although "optimum" is an absolute term, like "unique", it became common verbal practice to make it relative: "not quite optimum" or "less optimum" or "not very optimum". Mel called the maximum time-delay locations the "most pessimum". After he finished the blackjack program and got it to run ("Even the initializer is optimized", he said proudly), he got a Change Request from the sales department. The program used an elegant (optimized) random number generator to shuffle the "cards" and deal from the "deck", and some of the salesmen felt it was too fair, since sometimes the customers lost. They wanted Mel to modify the program so, at the setting of a sense switch on the console, they could change the odds and let the customer win. Mel balked. He felt this was patently dishonest, which it was, and that it impinged on his personal integrity as a programmer, which it did, so he refused to do it. The Head Salesman talked to Mel, as did the Big Boss and, at the boss's urging, a few Fellow Programmers. Mel finally gave in and wrote the code, but he got the test backwards, and, when the sense switch was turned on, the program would cheat, winning every time. Mel was
Comments (0)