The Psychology of Management by L. M. Gilbreth (latest books to read txt) 📖
- Author: L. M. Gilbreth
- Performer: -
Book online «The Psychology of Management by L. M. Gilbreth (latest books to read txt) 📖». Author L. M. Gilbreth
5. The quality of the output is prescribed.
When to this is added the fact that the method is taught, and that the reward is ample, fixed, prompt and assured, the attractive features of the task under Scientific Management have been made plain.
Task Idea Applies to Work of Everyone. — Under Scientific Management there is a task for every member of the organization, from the head of the management to the worker at the most rudimentary work. This is too often not known, or not appreciated by the worker, who feels that what is deemed best for him should be good for everyone. The mental attitude will never be right till all understand that the task idea will increase efficiency when applied to any possible kind of work. With the application of the task idea to all, will come added coöperation.
Task Idea Applies to the Work of the Organization. — The work which is to be done by the organization should be considered the task of the organization, and this organization task is studied before individual tasks are set. The methods used in determining this organization task are analysis and synthesis, just as in the case of the individual task.
Individual Tasks Are Elements of Organization Task. — The individual tasks are considered as elements of the organization task. The problem is, to determine the best arrangement of these individual tasks, the best schedule, and routing. The individual task may be thought of as something moving, that must be gotten out of the way.
Management has been called largely a matter of transportation. It may be "transportation" or moving of materials, revolution of parts of fixed machinery, or merely transportation of parts of one's body in manual movements; 7 in any case, the laws governing transportation apply to all. This view of management is most stimulating to the mind. A moving object attracts attention and holds interest. Work that is interesting can be accomplished with greater speed and less fatigue. Thinking in terms of the methods of Scientific Management as the most accurate and efficient in transporting the finished output and its "chips" 8 will be a great aid towards attaining the best results possible by means of a new method of visualizing the problem.
Qualifications of the Synthesist. — The synthesist must have a constructive mind, for he determines the sequence of events as well as the method of attack. He must have the ability to see the completed whole which he is trying to make, and to regard the elements with which he works not only as units, but in relation to each other. He must feel that any combination is influenced not only by the elements that go into it, but by the inter-relation between these elements. This differs for different combinations as in a kaleidoscope.
The Synthesist a Conserver. — The Synthesist must never be thought of as a destructive critic. He is, in reality, a conserver of all that is valuable in old methods. Through his work and that of the analyst, the valuable elements of traditional methods are incorporated into standard methods. These standard methods will, doubtless, be improved as time goes on, but the valuable elements will be permanently conserved.
Synthesist an Inventor. — The valuable inventions referred to as the result of measurement are the work of the synthetic mind. It discovers new, better methods of doing work, and this results in the invention of better means, such as tools or equipment.
For example, — in the field of Bricklaying, the Non-stooping Scaffold, the Packet and the Fountain Trowel were not invented until the analysis of bricklaying was made, and the synthesis of the chosen elements into standard methods made plain the need and specifications for new equipment.
Relation of Invention to Scientific Management Important. — There has been much discussion as to the relation of Invention to Scientific Management. It has been claimed by many otherwise able authorities that many results claimed as due to Scientific Management are really the results of new machinery, tools or equipment that have been invented. 9 Scientific Management certainly can lay no claim to credit for efficiency which comes through inventions neither suggested nor determined by it. But the inventions from the results of which Scientific Management is said to have borrowed credit are usually, like the bricklaying inventions cited, not only direct results of Scientific Management, but probably would not have sprung from any other source for years to come.
Synthesist a Discoverer of Laws. — It is the synthetic type of mind that discovers the laws. For example — it was Dr. Taylor, with the aid of a few of his specially trained co-workers, who discovered the following governing laws:
1. law of no ratio between the foot-pounds of work done and the fatigue caused in different kinds of work.
2. law of percentage of rest for overcoming fatigue.
3. law of classification of work according to percentage of fatigue caused.
4. laws for making high-speed steel.
5. laws relating to cutting metals.
6. laws that will predict the right speed, feed and cut on metals for the greatest output.
7. laws for predicting maximum quantity of output that a man can achieve and thrive.
8. laws for determining the selection of the men best suited for the work.
Synthesist an Adviser on Introduction of New Methods. — Having constructed the standard tasks or standard methods which are new, the synthesist must remember to introduce his new task or method with as few new variables as possible. He should so present it that all the old knowledge will come out to meet the new, that all the brain paths that have already been made will be utilized, and that the new path will lead out from paths which are well known and well traveled.
Introduce with as Few New Variables as Possible. — The greatest speed in learning a new method will be attained by introducing it with as few new variables as possible.
For example, — learning to dictate to a dictaphone. The writer found it very difficult, at first, to dictate into the dictaphone,— the whirling of the cylinder distracted the eye, the buzzing of the motor distracted the ear, the rubber tube leading to the mouth-piece was constantly reminding the touch that something new was being attempted. At the suggestion of one well versed in Scientific Management, the mouth-piece of the dictaphone was propped on the desk telephone on a level with the mouth-piece of the latter. The writer then found that as soon as one became interested in the dictating and one's attention was concentrated on the thought, one was able absolutely to forget the new variable, because it is one which is kept constant, and to dictate fluently. The emphasis laid on the likeness in thus dictating to the old accustomed act of talking through the telephone, seemed to put all other differences into the background, and to allow of forming the new and desired habit very quickly.
SUMMARYEffect of Analysis and Synthesis on the Work. — As the outcome of Analysis and Synthesis is Standardization, so the effect of them upon work is standard work. Quantity of output can be predicted, quality of output is assured.
Effect on the Worker. — The effect of Analysis and Synthesis upon the worker is to make him feel that the methods which he is using are right, and that, because of this, his work must be of value. The more the worker is induced to coöperate in the determining and the combination of elements, the more will he share with the investigators the satisfaction in getting permanent results. The outcome of this coöperation will, again, result in more perfect future results, and so on, progressively.
1. Compare Mechanical Analysis. Taylor and Thompson, Concrete, Plain and Reinforced, p. 193.
2. H. LeChatelier, Discussion of Paper 1119, A.S.M.E., p. 303.
3. H.L. Gantt, Work, Wages and Profits, p. 35.
4. F.B. Gilbreth, Cost Reducing System.
5. F.B. Gilbreth, Bricklaying System, p. 151.
6. James M. Dodge, Discussion of Paper 1119, A.S.M.E., para. 284.
7. F.B. Gilbreth, Motion Study.
8. James M. Dodge.
9. London, Engineering, Sept. 15, 1911.
CHAPTER VI STANDARDIZATION
Definition of Standardization. — Standardization is "the act of standardizing, or the state of being standardized." "A standard," according to the Century Dictionary, "is that which is set up as a unit of reference; a form, type, example, incidence, or combination of conditions accepted as correct and perfect and hence as a basis of comparison. A criterion established by custom, public opinion or general consent; a model." 1
We must note particularly that the standard is a "unit of reference," that it is a "basis of comparison," and that it is "a model." These three phrases describe the standard in management, and are particularly emphasized by the use of the standard in Scientific Management.
Standards Derived from Actual Practice. — Management derives its standards not from theories as to best methods, but from scientific study of actual practice. 2 As already shown, the method of deriving a standard is —
1. to analyze the best practice known into the smallest possible elements,
2. to measure these elements,
3. to adopt the least wasteful elements as standard elements,
4. to synthesize the necessary standard elements into the standard.
The Standard Is Progressive. — A standard remains fixed only until a more perfect standard displaces it. The data from which the standard was derived may be reviewed because of some error, because a further subdivision of the elements studied may prove possible, or because improvements in some factor of the work, i.e., the worker, material, tools, equipment, etc., may make a new standard desirable.
The fact that a standard is recognized as not being an ultimate standard in no wise detracts from its working value. As Captain Metcalfe has said: "Whatever be the standard of measurement, it suffices for comparison if it be generally accepted, if it be impartially applied, and if the results be fully recorded." 3
Change in the Standard Demands Change in the Task and in the Incentive. — Necessarily, with the change in the standard comes a change in the task and in the reward. All parts of Scientific Management are so closely related that it is impossible to make a successful progressive step in one branch without simultaneously making all the related progressions in other branches that go with it.
For example, — if the material upon which a standard was based caused more care or effort, a smaller task must be set, and wages must be proportionately lowered. Proportionately, note, for determining that change would necessitate a review and a redistribution of the cost involved.
In the same way, if an improvement in equipment necessitated a new method, as does the packet in laying brick, a new task would become imperative, and a reconsideration of the wage. The wage might remain the same, it might go down, it might go up. In actual practice, in the case of bricklayers, it has gone up. But the point is, it must be restudied. This provides effectually against cutting the rate or increasing the task in any unjust manner.
Similarity Between the Standard and the "Judgment" of Psychology. — There are many points of similarity between the "Standard," of management, and the "judgment" of psychology. Sully says, in speaking of the judgment, 4 — "This process of judging illustrates the two fundamental elements in thought activity, viz., analysis and synthesis." "To judge is clearly to discern and to mark off as a special object of thought some connecting relation." "To begin with, before we can judge we must have the requisite materials for forming a judgment." "In the second place, to judge is to carry out a process of reflection on given material." "In addition to clearness and accuracy, our judgments may have
Comments (0)