Psychology books read online

Reading books Psychology A very interesting statement of one of our contemporaries is that any person, to one degree or another, is both a psychologist and a philosopher - they say, life forces him to. On the one hand, the main driving force of every person is the craving for knowledge, the desire to reach certain social heights, the desire to be wise in any everyday situations - and this is the philosophy of life.
Our electronic library will introduce you all aspects of psychology in all directions. Reading psychology books on our website for free. Online ebooks is our future. Without registration you can read the genre psychology right now.



Psychology is an effective and efficient tool in mastering the laws of the inner world, human activity and behavior.
In the case of a real individual understanding of the thoughts of the authors, the horizons of being are truly boundless for the reader. Such a person will receive not only the most powerful theoretical basis in understanding the world, but also practical guidance for action and behavior in almost every sphere of life. Psychology as one of the basic sciences has absorbed many segments and currents, the representatives of each of which were and are the best minds of mankind. It will be quite difficult for an inexperienced reader not only to understand, but even to master the world philosophical thought. The number of people interested in psychology grows hundreds of times every day. And this is accessibly : everyone wants to understand the laws according to which events develop in his family, at school, in the yard, at work, on the street. Mankind has accumulated a huge knowledge base in the field of psychology over the years of its existence, and this base is replenished almost daily by many authors.




We suggest you to get acquainted with the books of the genre of philosophy on our website worldlibraryebooks.com. The most valuable books are in our electronic library for free.

Read books online » Psychology » Psychology by Robert S. Woodworth (intellectual books to read .TXT) 📖

Book online «Psychology by Robert S. Woodworth (intellectual books to read .TXT) 📖». Author Robert S. Woodworth



1 ... 29 30 31 32 33 34 35 36 37 ... 88
Go to page:
another element. The particular red selected would be that of the red end of the spectrum, if we follow the general vote; and the green would probably be something very near grass green. We thus arrive at the conclusion that there are six elementary visual responses or sensations: white and black, yellow and blue, red and green.

It is a curious fact that some of these elementary sensations blend with each other, while some refuse to blend. White and black blend to gray, and either white or black or both together will blend with any of the four elementary colors or with any possible blend of these four. Brown, for {220} example, is a grayish orange, that is, a blend of white, black, red and yellow. Red blends with yellow, yellow with green, green with blue, and blue with red. But we cannot get yellow and blue to blend, nor red and green. When we try to get yellow and blue to blend, by combining their appropriate stimuli, both colors disappear, and we get simply the colorless sensation of white or gray. When we try to get red and green to blend, both of them disappear and we get the sensation of yellow.

Theories of Color Vision

Of the most celebrated theories of color vision, the oldest, propounded by the physicists Young and Helmholtz, recognized only three elements, red, green and blue. Yellow they regarded as a blend of red and green, and white as a blend of all three elements. The unsatisfactory nature of this theory is obvious. White as a sensation is certainly not a blend of these three color sensations, but is, precisely, colorless; and no more is the yellow sensation a blend of red and green. Moreover, the theory cannot do justice either to total color-blindness, with its white and black but no colors, or to red-green blindness, with its yellow but no red or green.

The next prominent theory was that of the physiologist Hering. He did justice to white and black by accepting them as elements; and to yellow and blue likewise. The fact that yellow and blue would not blend he accounted for by supposing them to be antagonistic responses of the retina; when, therefore, the stimuli for both acted together on the retina, neither of the two antagonistic responses could occur, and what did occur was simply the more generic response of white. Proceeding along this line, he concluded that red and green were also antagonistic responses; but just here {221} he committed a wholly unnecessary error, in assuming that if red and green were antagonistic responses, the combination of their stimuli must give white, just as with yellow and blue. Accordingly, he was forced to select as his red and green elementary color-tones two that would be complementary; and this meant a purplish (i.e., bluish) red, and a bluish green, with the result that his "elementary" red and green appear to nearly every one as compounds and not elements. It would really have been just as easy for Hering to suppose that the red and green responses, antagonizing each other, left the sensation yellow; and then he could have selected that red and green which we have concluded above to have the best claim.

A third theory, propounded by the psychologist, Dr. Christine Ladd-Franklin, is based on keen criticism of the previous two, and seems to be harmonious with all the facts. She supposes that the color sense is now in the third stage of its evolution. In the first stage the only elements were white and black; the second stage added yellow and blue; and the third stage red and green. The outer zone of the retina is still in the first stage, and the intermediate zone in the second, only the central area having reached the third. In red-green blind individuals, the central area remains in the second stage, and in the totally color-blind the whole retina is still in the first stage.

In the first stage, one response, white, was made to light of whatever wave-length. In the second stage, this single response divided into two, one aroused by the long waves and the other by the short. The response to the long waves was the sensation of yellow, and that to the short waves the sensation of blue. In the third stage, the yellow response divided into one for the longest waves, corresponding to the red, and one for somewhat shorter waves, corresponding to the green. Now, when we try to get a blend of red and green {222} by combining red and green lights, we fail because the two responses simply unite and revert to the more primitive yellow response; and similarly when we try to get the yellow and blue responses together, they revert to the more primitive white response out of which they developed.

But, since no one can pretend to see yellow as a reddish green, nor white as a bluish yellow, it is clear that the just-spoken-of union of the red and green responses, and of the yellow and blue responses, must take place below the level of conscious sensation. These unions probably take place within the retina itself. Probably they are purely chemical unions.



Fig. 37.--The Ladd-Franklin theory of the evolution of the color sense. (Figure text: Stage 1--white, Stage 2--yellow blue, Stage 3--red green blue)

The very first response of a rod or cone to light is probably a purely chemical reaction. Dr. Ladd-Franklin, carrying out her theory, supposes that a light-sensitive "mother substance" in the rods and cones is decomposed by the action of light, and gives off cleavage products which arouse the vital activity of the rods and cones, and thus start nerve currents coursing towards the brain.

In the "first stage", she supposes, a single big cleavage product, which we may call W, is split off by the action of {223} light upon the mother substance, and the vital response to W is the sensation of white.

In the second stage, the mother substance is capable of giving off two smaller cleavage products, Y and B. Y is split off by the long waves of light, and B by the short waves, and the vital response to Y is the sensation of yellow, that to B the sensation of blue. But suppose that, chemically, Y + B = W: then, if Y and B are both split off at the same time in the same cone, they immediately unite into W, and the resulting sensation is white, and neither yellow nor blue.



Fig. 38.--The cleavage products, in the three stages of the color sense. The "mother substance" is not represented in the diagram, but only the cleavage products which, according to the Ladd-Franklin theory, are the direct stimuli for the color sensations. (Figure text: 1--white, 2--yellow blue, 3--red green blue)

Similarly, in the third stage, the mother substance is capable of giving off three cleavage products, R, G and B; and there are three corresponding vital responses, the sensations of red, green and blue. But, chemically, R + G = Y; and therefore, if R and G are split off at the same time, they unite chemically into Y and give the sensation of yellow. If R, G and B are all split off at the same time, they unite chemically as follows: R + G = Y, and Y + B = W; and therefore the resulting sensation is that of white.

This theory of cleavage products is in good general agreement with chemical principles, and it does justice to all the facts of color vision, as detailed in the preceding pages. It should be added that "for black, the theory supposes that, {224} in the interest of a continuous field of view, objects which reflect no light at all upon the retina have correlated with them a definite non-light sensation--that of black." [Footnote: Quotation from Dr. Ladd-Franklin.]

Adaptation

Sensory adaptation is a change that occurs in other senses also, but it is so much more important in the sense of sight than elsewhere that it may best be considered here. The stimulus continues, the sensation ceases or diminishes--that is the most striking form of sensory adaptation. Continued action of the same stimulus puts the sense into such a condition that it responds differently from at first, and usually more weakly. It is much like fatigue, but it often is more positive and beneficial than fatigue.

The sense of smell is very subject to adaptation. On first entering a room you clearly sense an odor that you can no longer get after staying there for some time. This adaptation to one odor does not prevent your sensing quite different odors. Taste shows less adaptation than smell, but all are familiar with the decline in sweet sensation that comes with continued eating of sweets.

All of the cutaneous senses except that for pain are much subject to adaptation. Continued steady pressure gives a sensation that declines rapidly and after a time ceases altogether. The temperature sense is usually adapted to the temperature of the skin, which therefore feels neither warm nor cool. If the temperature of the skin is raised from its usual level of about 70 degrees Fahrenheit to 80 or 86, this temperature at first gives the sensation of warmth, but after a time it gives no temperature sensation at all; the warmth sense has become adapted to the temperature of 80 degrees; and now a temperature of 70 will give the sensation of cool. {225} Hold one hand in water at 80 and the other in water at 66, and when both have become adapted to these respective temperatures, plunge them together into water at 70; and you will find this last to feel cool to the warm-adapted hand and warm to the cool-adapted. There are limits to this power of adaptation.

The muscle sense seems to become adapted to any fixed position of a limb, so that, after the limb has remained motionless for some time, you cannot tell in what position it is; to find out, you have only to move it the least bit, which will excite both the muscle sense and the cutaneous pressure sense. The sense of head rotation is adaptable, in that a rotation which is keenly sensed at the start ceases to be felt as it continues; but here it is not the sense cells that become adapted, but the back flow that ceases, as will soon be explained.

To come now to the sense of sight, we have light adaptation, dark adaptation, and color adaptation. Go into a dark room, and at first all seems black, but by degrees--provided there is a little light filtering into the room--you begin to see, for your retina is becoming dark-adapted. Now go out into a bright place, and at first you are "blinded", but you quickly "get used" to the bright illumination and see objects much more distinctly than at first; for your eye has now become light-adapted. Remain for some time in a room illuminated by a colored light (as the yellowish light of most artificial illuminants), and by degrees the color sensation bleaches out so that the light appears nearly white.

Dark adaptation is equivalent to sensitizing the retina for faint light. Photographic plates can be made of more or less sensitiveness for use with different illuminations; but the retina automatically alters its sensitivity to fit the illumination to which it is exposed.

{226}

Rod and Cone Vision

You will notice, in the dark room, that while you see light and shade and the forms of objects, you do not see colors. The same is true out of doors at night. In other words, the kind of vision that we have when the eye is dark-adapted is totally color-blind. Another significant fact is that the fovea is of little use in very dim light. These facts are taken to mean that dim-light vision, or twilight vision as it is sometimes called, is rod vision and not cone

1 ... 29 30 31 32 33 34 35 36 37 ... 88
Go to page:

Free ebook «Psychology by Robert S. Woodworth (intellectual books to read .TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment