The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖
- Author: William Harmon Norton
- Performer: -
Book online «The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖». Author William Harmon Norton
WAVES. The position of the rock bench, with its inner margin slightly above low tide, shows that it has been cut by some agent which acts like a horizontal saw set at about sea level. This agent is clearly the surface agitation of the water; it is the wind-raised wave.
As a wave comes up the shelving bench the crest topples forward and the wave "breaks," striking a blow whose force is measured by the momentum of all its tons of falling water. On the coast of Scotland the force of the blows struck by the waves of the heaviest storms has sometimes exceeded three tons to the square foot. But even a calm sea constantly chafes the shore. It heaves in gentle undulations known as the ground swell, the result of storms perhaps a thousand miles distant, and breaks on the shore in surf.
The blows of the waves are not struck with clear water only, else they would have little effect on cliffs of solid rock. Storm waves arm themselves with the sand and gravel, the cobbles, and even the large bowlders which lie at the base of the cliff, and beat against it with these hammers of stone.
Where a precipice descends sheer into deep water, waves swash up and down the face of the rocks but cannot break and strike effective blows. They therefore erode but little until the talus fallen from the cliff is gradually built up beneath the sea to the level at which the waves drag bottom upon it and break.
Compare the ways in which different agents abrade. The wind lightly brushes sand and dust over exposed surfaces of rock. Running water sweeps fragments of various sizes along its channels, holding them with a loose hand. Glacial ice grinds the stones of its ground moraine against the underlying rock with the pressure of its enormous weight. The wave hurls fragments of rock against the sea cliff, bruising and battering it by the blow. It also rasps the bench as it drags sand and gravel to and fro upon it.
WEATHERING OF SEA CLIFFS. The sea cliff furnishes the weapons for its own destruction. They are broken from it not only by the wave but also by the weather. Indeed the sea cliff weathers more rapidly, as a rule, than do rock ledges inland. It is abundantly wet with spray. Along its base the ground water of the neighboring land finds its natural outlet in springs which under mine it. Moreover, it is unprotected by any shield of talus. Fragments of rock as they fall from its face are battered to pieces by the waves and swept out to sea. The cliff is thus left exposed to the attack of the weather, and its retreat would be comparatively rapid for this reason alone.
Sea cliffs seldom overhang, but commonly, as in Figure 134, slope seaward, showing that the upper portion has retreated at a more rapid rate than has the base. Which do you infer is on the whole the more destructive agent, weathering or the wave?
Draw a section of a sea cliff cut in well jointed rocks whose joints dip toward the land. Draw a diagram of a sea cliff where the joints dip toward the sea.
SEA CAVES. The wave does not merely batter the face of the cliff. Like a skillful quarryman it inserts wedges in all natural fissures, such as joints, and uses explosive forces. As a wave flaps against a crevice it compresses the air within with the sudden stroke; as it falls back the air as suddenly expands. On lighthouses heavily barred doors have been burst outward by the explosive force of the air within, as it was released from pressure when a partial vacuum was formed by the refluence of the wave. Where a crevice is filled with water the entire force of the blow of the wave is transmitted by hydraulic pressure to the sides of the fissure. Thus storm waves little by little pry and suck the rock loose, and in this way, and by the blows which they strike with the stones of the beach, they quarry out about a joint, or wherever the rock may be weak, a recess known as a SEA CAVE, provided that the rock above is coherent enough to form a roof. Otherwise an open chasm results.
BLOWHOLES AND SEA ARCHES. As a sea cave is drilled back into the rock, it may encounter a joint or crevice opened to the surface by percolating water. The shock of the waves soon enlarges this to a blowhole, which one may find on the breezy upland, perhaps a hundred yards and more back from the cliff's edge. In quiet weather the blowhole is a deep well; in storm it plays a fountain as the waves drive through the long tunnel below and spout their spray high in air in successive jets. As the roof of the cave thus breaks down in the rear, there may remain in front for a while a sea arch, similar to the natural bridges of land caverns.
STACKS AND WAVE-CUT ISLANDS. As the sea drives its tunnels and open drifts into the cliff, it breaks through behind the intervening portions and leaves them isolated as stacks, much as monuments are detached from inland escarpments by the weather; and as the sea cliff retreats, these remnant masses may be left behind as rocky islets. Thus the rock bench is often set with stacks, islets in all stages of destruction, and sunken reefs, all wrecks of the land testifying to its retreat before the incessant attack of the waves.
COVES. Where zones of soft or closely jointed rock outcrop along a shore, or where minor water courses conic down to the sea and aid in erosion, the shore is worn back in curved reentrants called coves; while the more resistant rocks on either hand are left projecting as headlands (Fig. 139). After coves are cut back a short distance by the waves, the headlands come to protect them, as with breakwaters, and prevent their indefinite retreat. The shore takes a curve of equilibrium, along which the hard rock of the exposed headland and the weak rock of the protected cove wear back at an equal rate.
RATE OF RECESSION. The rate at which a shore recedes depends on several factors. In soft or incoherent rocks exposed to violent storms the retreat is so rapid as to be easily measured. The coast of Yorkshire, England, whose cliffs are cut in glacial drift, loses seven feet a year on the average, and since the Norman conquest a strip a mile wide, with farmsteads and villages and historic seaports, has been devoured by the sea. The sandy south shore of Martha's Vineyard wears back three feet a year. But hard rocks retreat so slowly that their recession has seldom been measured by the records of history.
SHORE DRIFTBOWLDER AND PEBBLE BEACHES. About as fast as formed the waste of the sea cliff is swept both along the shore and out to sea. The road of waste along shore is the BEACH. We may also define the beach as the exposed edge of the sheet of sediment formed by the carriage of land waste out to sea. At the foot of sea cliffs, where the waves are pounding hardest, one commonly finds the rock bench strewn on its inner margin with large stones, dislodged by the waves and by the weather and some-what worn on their corners and edges. From this BOWLDER BEACH the smaller fragments of waste from the cliff and the fragments into which the bowlders are at last broken drift on to more sheltered places and there accumulate in a PEBBLE BEACH, made of pebbles well rounded by the wear which they have suffered. Such beaches form a mill whose raw material is constantly supplied by the cliff. The breakers of storms set it in motion to a depth of several feet, grinding the pebbles together with a clatter to be heard above the roar of the surf. In such a rock crusher the life of a pebble is short. Where ships have stranded on our Atlantic coast with cargoes of hard-burned brick or of coal, a year of time and a drift of five miles along the shore have proved enough to wear brick and coal to powder. At no great distance from their source, therefore, pebble beaches give place to beaches of sand, which occupy the more sheltered reaches of the shore.
SAND BEACHES. The angular sand grains of various minerals into which pebbles are broken by the waves are ground together under the beating surf and rounded, and those of the softer minerals are crushed to powder. The process, however, is a slow one, and if we study these sand grains under a lens we may be surprised to see that, though their corners and edges have been blunted, they are yet far from the spherical form of the pebbles from which they were derived. The grains are small, and in water they have lost about half their weiglit in air; the blows which they strike one another are therefore weak. Besides, each grain of sand of the wet beach is protected by a cushion of water from the blows of its neighbors.
The shape and size of these grains and the relative proportion of grains of the softer minerals which still remain give a rough measure of the distance in space and time which they have traveled from their source. The sand of many beaches, derived from the rocks of adjacent cliffs or brought in by torrential streams from neighboring highlands, is dark with grains of a number of minerals softer than quartz. The white sand of other beaches, as those of the east coast of Florida, is almost wholly composed of quartz grains; for in its long travel down the Atlantic coast the weaker minerals have been worn to powder and the hardest alone survive.
How does the absence of cleavage in quartz affect the durability of quartz sand?
HOW SHORE DRIFT MIGRATES. It is under the action of waves and currents that shore drift migrates slowly along a coast. Where waves strike a coast obliquely they drive the waste before them little by little along the shore. Thus on a north-south coast, where the predominant storms are from the northeast, there will be a migration of shore drift southwards.
All shores are swept also by currents produced by winds and tides. These are usually far too gentle to transport of themselves the coarse materials of which beaches are made. But while the wave stirs the grains of sand and gravel, and for a moment lifts them from the bottom, the current carries them a step forward on their way. The current cannot lift and the wave cannot carry, but together the two transport the waste along the shore. The road of shore drift is therefore the zone of the breaking waves.
THE BAY-HEAD BEACH. As the waste derived from the wear of waves and that brought in by streams is trailed along a coast it assumes, under varying conditions, a number of distinct forms. When swept into the head of a sheltered bay it constitutes the bay-head beach. By the highest storm waves the beach is often built higher than the ground immediately behind it, and forms a dam inclosing a shallow pond or marsh.
THE BAY BAR. As the stream of shore drift reaches the mouth of a bay of some size it often occurs that, instead of turning in, it sets directly across toward the opposite headland. The waste is carried out from shore into the deeper waters of the bay mouth; where it is no longer supported by the breaking waves, and sinks to the bottom. The dump is gradually built to the surface as a stubby spur, pointing across the bay, and as it reaches the zone of wave action current and wave can now combine to carry shore drift along it, depositing their load continually at the point of the spur. An embankment is thus constructed in much the same manner as a railway fill, which, while it is building, serves as a roadway along which the dirt from an adjacent cut is carted to be dumped at the end. When the embankment is completed it bridges the bay with a highway along which shore drift now moves without interruption, and becomes a bay bar.
INCOMPLETE BAY BARS. Under certain conditions the sea cannot carry out its intention to bridge a bay. Rivers discharging in bays demand open way to the ocean. Strong tidal currents also are able to keep open channels scoured by their ebb and flow. In such cases the most that land waste can do is to build spits and shoals, narrowing and shoaling the channel as much as possible. Incomplete bay bars sometimes have their points recurved by
Comments (0)