Science
Read books online » Science » Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖

Book online «Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖». Author Henry Ernest Dudeney



1 ... 26 27 28 29 30 31 32 33 34 ... 87
Go to page:
and so on. There are a great many different ways of arranging the letters under this condition. The puzzle is to find an arrangement that produces the greatest possible number of four-letter words, reading upwards and downwards, backwards and forwards, or diagonally. All repetitions count as different words, and the five variations that may be used are: VEIL, VILE, LEVI, LIVE, and EVIL.

This will be made perfectly clear when I say that the above arrangement scores eight, because the top and bottom row both give VEIL; the second and seventh columns both give VEIL; and the two diagonals, starting from the L in the 5th row and E in the 8th row, both give LIVE and EVIL. There are therefore eight different readings of the words in all.

This difficult word puzzle is given as an example of the use of chessboard analysis in solving such things. Only a person who is familiar with the "Eight Queens" problem could hope to solve it.

304.—BACHET'S SQUARE.

One of the oldest card puzzles is by Claude Caspar Bachet de Méziriac, first published, I believe, in the 1624 edition of his work. Rearrange the sixteen court cards (including the aces) in a square so that in no row of four cards, horizontal, vertical, or diagonal, shall be found two cards of the same suit or the same value. This in itself is easy enough, but a point of the puzzle is to find in how many different ways this may be done. The eminent French mathematician A. Labosne, in his modern edition of Bachet, gives the answer incorrectly. And yet the puzzle is really quite easy. Any arrangement produces seven more by turning the square round and reflecting it in a mirror. These are counted as different by Bachet.

Note "row of four cards," so that the only diagonals we have here to consider are the two long ones.

305.—THE THIRTY-SIX LETTER BLOCKS.

The illustration represents a box containing thirty-six letter-blocks. The puzzle is to rearrange these blocks so that no A shall be in a line vertically, horizontally, or diagonally with another A, no B with another B, no C with another C, and so on. You will find it impossible to get all the letters into the box under these conditions, but the point is to place as many as possible. Of course no letters other than those shown may be used.

306.—THE CROWDED CHESSBOARD.

The puzzle is to rearrange the fifty-one pieces on the chessboard so that no queen shall attack another queen, no rook attack another rook, no bishop attack another bishop, and no knight attack another knight. No notice is to be taken of the intervention of pieces of another type from that under consideration—that is, two queens will be considered to attack one another although there may be, say, a rook, a bishop, and a knight between them. And so with the rooks and bishops. It is not difficult to dispose of each type of piece separately; the difficulty comes in when you have to find room for all the arrangements on the board simultaneously.

307.—THE COLOURED COUNTERS.

The diagram represents twenty-five coloured counters, Red, Blue, Yellow, Orange, and Green (indicated by their initials), and there are five of each colour, numbered 1, 2, 3, 4, and 5. The problem is so to place them in a square that neither colour nor number shall be found repeated in any one of the five rows, five columns, and two diagonals. Can you so rearrange them?

308.—THE GENTLE ART OF STAMP-LICKING.

The Insurance Act is a most prolific source of entertaining puzzles, particularly entertaining if you happen to be among the exempt. One's initiation into the gentle art of stamp-licking suggests the following little poser: If you have a card divided into sixteen spaces (4 × 4), and are provided with plenty of stamps of the values 1d., 2d., 3d., 4d., and 5d., what is the greatest value that you can stick on the card if the Chancellor of the Exchequer forbids you to place any stamp in a straight line (that is, horizontally, vertically, or diagonally) with another stamp of similar value? Of course, only one stamp can be affixed in a space. The reader will probably find, when he sees the solution, that, like the stamps themselves, he is licked He will most likely be twopence short of the maximum. A friend asked the Post Office how it was to be done; but they sent him to the Customs and Excise officer, who sent him to the Insurance Commissioners, who sent him to an approved society, who profanely sent him—but no matter.

309.—THE FORTY-NINE COUNTERS.

Can you rearrange the above forty-nine counters in a square so that no letter, and also no number, shall be in line with a similar one, vertically, horizontally, or diagonally? Here I, of course, mean in the lines parallel with the diagonals, in the chessboard sense.

310.—THE THREE SHEEP.

A farmer had three sheep and an arrangement of sixteen pens, divided off by hurdles in the manner indicated in the illustration. In how many different ways could he place those sheep, each in a separate pen, so that every pen should be either occupied or in line (horizontally, vertically, or diagonally) with at least one sheep? I have given one arrangement that fulfils the conditions. How many others can you find? Mere reversals and reflections must not be counted as different. The reader may regard the sheep as queens. The problem is then to place the three queens so that every square shall be either occupied or attacked by at least one queen—in the maximum number of different ways.

311.—THE FIVE DOGS PUZZLE.

In 1863, C.F. de Jaenisch first discussed the "Five Queens Puzzle"—to place five queens on the chessboard so that every square shall be attacked or occupied—which was propounded by his friend, a "Mr. de R." Jaenisch showed that if no queen may attack another there are ninety-one different ways of placing the five queens, reversals and reflections not counting as different. If the queens may attack one another, I have recorded hundreds of ways, but it is not practicable to enumerate them exactly.

The illustration is supposed to represent an arrangement of sixty-four kennels. It will be seen that five kennels each contain a dog, and on further examination it will be seen that every one of the sixty-four kennels is in a straight line with at least one dog—either horizontally, vertically, or diagonally. Take any kennel you like, and you will find that you can draw a straight line to a dog in one or other of the three ways mentioned. The puzzle is to replace the five dogs and discover in just how many different ways they may be placed in five kennels in a straight row, so that every kennel shall always be in line with at least one dog. Reversals and reflections are here counted as different.

312.—THE FIVE CRESCENTS OF BYZANTIUM.

When Philip of Macedon, the father of Alexander the Great, found himself confronted with great difficulties in the siege of Byzantium, he set his men to undermine the walls. His desires, however, miscarried, for no sooner had the operations been begun than a crescent moon suddenly appeared in the heavens and discovered his plans to his adversaries. The Byzantines were naturally elated, and in order to show their gratitude they erected a statue to Diana, and the crescent became thenceforward a symbol of the state. In the temple that contained the statue was a square pavement composed of sixty-four large and costly tiles. These were all plain, with the exception of five, which bore the symbol of the crescent. These five were for occult reasons so placed that every tile should be watched over by (that is, in a straight line, vertically, horizontally, or diagonally with) at least one of the crescents. The arrangement adopted by the Byzantine architect was as follows:—

Now, to cover up one of these five crescents was a capital offence, the death being something very painful and lingering. But on a certain occasion of festivity it was necessary to lay down on this pavement a square carpet of the largest dimensions possible, and I have shown in the illustration by dark shading the largest dimensions that would be available.

The puzzle is to show how the architect, if he had foreseen this question of the carpet, might have so arranged his five crescent tiles in accordance with the required conditions, and yet have allowed for the largest possible square carpet to be laid down without any one of the five crescent tiles being covered, or any portion of them.

313.—QUEENS AND BISHOP PUZZLE.

It will be seen that every square of the board is either occupied or attacked. The puzzle is to substitute a bishop for the rook on the same square, and then place the four queens on other squares so that every square shall again be either occupied or attacked.

314.—THE SOUTHERN CROSS.

In the above illustration we have five Planets and eighty-one Fixed Stars, five of the latter being hidden by the Planets. It will be found that every Star, with the exception of the ten that have a black spot in their centres, is in a straight line, vertically, horizontally, or diagonally, with at least one of the Planets. The puzzle is so to rearrange the Planets that all the Stars shall be in line with one or more of them.

In rearranging the Planets, each of the five may be moved once in a straight line, in either of the three directions mentioned. They will, of course, obscure five other Stars in place of those at present covered.

315.—THE HAT-PEG PUZZLE.

Here is a five-queen puzzle that I gave in a fanciful dress in 1897. As the queens were there represented as hats on sixty-four pegs, I will keep to the title, "The Hat-Peg Puzzle." It will be seen that every square is occupied or attacked. The puzzle is to remove one queen

to a different square so that still every square is occupied or attacked, then move a second queen under a similar condition, then a third queen, and finally a fourth queen. After the fourth move every square must be attacked or occupied, but no queen must then attack another. Of course, the moves need not be "queen moves;" you can move a queen to any part of the board.

316.—THE AMAZONS.

This puzzle is based on one by Captain Turton. Remove three of the queens to other squares so that there shall be eleven squares on the board that are not attacked. The removal of the three queens need not be by "queen moves." You may take them up and place them anywhere. There is only one solution.

317.—A PUZZLE WITH PAWNS.

Place two pawns in the middle of the chessboard, one at Q 4 and the other at K 5. Now, place the remaining fourteen pawns (sixteen in all) so that no three shall be in a straight line in any possible direction.

Note that I purposely do not say queens, because by the words "any possible direction" I go beyond

1 ... 26 27 28 29 30 31 32 33 34 ... 87
Go to page:

Free ebook «Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment