Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖
- Author: Henry Ernest Dudeney
- Performer: 0486204731
Book online «Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖». Author Henry Ernest Dudeney
34.—THE GROCER AND DRAPER.
A country "grocer and draper" had two rival assistants, who prided themselves on their rapidity in serving customers. The young man on the grocery side could weigh up two one-pound parcels of sugar per minute, while the drapery assistant could cut three one-yard lengths of cloth in the same time. Their employer, one slack day, set them a race, giving the grocer a barrel of sugar and telling him to weigh up forty-eight one-pound parcels of sugar While the draper divided a roll of forty-eight yards of cloth into yard pieces. The two men were interrupted together by customers for nine minutes, but the draper was disturbed seventeen times as long as the grocer. What was the result of the race?
35.—JUDKINS'S CATTLE.
Hiram B. Judkins, a cattle-dealer of Texas, had five droves of animals, consisting of oxen, pigs, and sheep, with the same number of animals in each drove. One morning he sold all that he had to eight dealers. Each dealer bought the same number of animals, paying seventeen dollars for each ox, four dollars for each pig, and two dollars for each sheep; and Hiram received in all three hundred and one dollars. What is the greatest number of animals he could have had? And how many would there be of each kind?
36.—BUYING APPLES.
As the purchase of apples in small quantities has always presented considerable difficulties, I think it well to offer a few remarks on this subject. We all know the story of the smart boy who, on being told by the old woman that she was selling her apples at four for threepence, said: "Let me see! Four for threepence; that's three for twopence, two for a penny, one for nothing—I'll take one!"
There are similar cases of perplexity. For example, a boy once picked up a penny apple from a stall, but when he learnt that the woman's pears were the same price he exchanged it, and was about to walk off. "Stop!" said the woman. "You haven't paid me for the pear!" "No," said the boy, "of course not. I gave you the apple for it." "But you didn't pay for the apple!" "Bless the woman! You don't expect me to pay for the apple and the pear too!" And before the poor creature could get out of the tangle the boy had disappeared.
Then, again, we have the case of the man who gave a boy sixpence and promised to repeat the gift as soon as the youngster had made it into ninepence. Five minutes later the boy returned. "I have made it into ninepence," he said, at the same time handing his benefactor threepence. "How do you make that out?" he was asked. "I bought threepennyworth of apples." "But that does not make it into ninepence!" "I should rather think it did," was the boy's reply. "The apple woman has threepence, hasn't she? Very well, I have threepennyworth of apples, and I have just given you the other threepence. What's that but ninepence?"
I cite these cases just to show that the small boy really stands in need of a little instruction in the art of buying apples. So I will give a simple poser dealing with this branch of commerce.
An old woman had apples of three sizes for sale—one a penny, two a penny, and three a penny. Of course two of the second size and three of the third size were respectively equal to one apple of the largest size. Now, a gentleman who had an equal number of boys and girls gave his children sevenpence to be spent amongst them all on these apples. The puzzle is to give each child an equal distribution of apples. How was the sevenpence spent, and how many children were there?
37.—BUYING CHESTNUTS.
Though the following little puzzle deals with the purchase of chestnuts, it is not itself of the "chestnut" type. It is quite new. At first sight it has certainly the appearance of being of the "nonsense puzzle" character, but it is all right when properly considered.
A man went to a shop to buy chestnuts. He said he wanted a pennyworth, and was given five chestnuts. "It is not enough; I ought to have a sixth," he remarked! "But if I give you one chestnut more." the shopman replied, "you will have five too many." Now, strange to say, they were both right. How many chestnuts should the buyer receive for half a crown?
38.—THE BICYCLE THIEF.
Here is a little tangle that is perpetually cropping up in various guises. A cyclist bought a bicycle for £15 and gave in payment a cheque for £25. The seller went to a neighbouring shopkeeper and got him to change the cheque for him, and the cyclist, having received his £10 change, mounted the machine and disappeared. The cheque proved to be valueless, and the salesman was requested by his neighbour to refund the amount he had received. To do this, he was compelled to borrow the £25 from a friend, as the cyclist forgot to leave his address, and could not be found. Now, as the bicycle cost the salesman £11, how much money did he lose altogether?
39.—THE COSTERMONGER'S PUZZLE.
"How much did yer pay for them oranges, Bill?"
"I ain't a-goin' to tell yer, Jim. But I beat the old cove down fourpence a hundred."
"What good did that do yer?"
"Well, it meant five more oranges on every ten shillin's-worth."
Now, what price did Bill actually pay for the oranges? There is only one rate that will fit in with his statements.
AGE AND KINSHIP PUZZLES."The days of our years are threescore years and ten."
—Psalm xc. 10.
For centuries it has been a favourite method of propounding arithmetical puzzles to pose them in the form of questions as to the age of an individual. They generally lend themselves to very easy solution by the use of algebra, though often the difficulty lies in stating them correctly. They may be made very complex and may demand considerable ingenuity, but no general laws can well be laid down for their solution. The solver must use his own sagacity. As for puzzles in relationship or kinship, it is quite curious how bewildering many people find these things. Even in ordinary conversation, some statement as to relationship, which is quite clear in the mind of the speaker, will immediately tie the brains of other people into knots. Such expressions as "He is my uncle's son-in-law's sister" convey absolutely nothing to some people without a detailed and laboured explanation. In such cases the best course is to sketch a brief genealogical table, when the eye comes immediately to the assistance of the brain. In these days, when we have a growing lack of respect for pedigrees, most people have got out of the habit of rapidly drawing such tables, which is to be regretted, as they would save a lot of time and brain racking on occasions.
40.—MAMMA'S AGE.
Tommy: "How old are you, mamma?"
Mamma: "Let me think, Tommy. Well, our three ages add up to exactly seventy years."
Tommy: "That's a lot, isn't it? And how old are you, papa?"
Papa: "Just six times as old as you, my son."
Tommy: "Shall I ever be half as old as you, papa?"
Papa: "Yes, Tommy; and when that happens our three ages will add up to exactly twice as much as to-day."
Tommy: "And supposing I was born before you, papa; and supposing mamma had forgot all about it, and hadn't been at home when I came; and supposing——"
Mamma: "Supposing, Tommy, we talk about bed. Come along, darling. You'll have a headache."
Now, if Tommy had been some years older he might have calculated the exact ages of his parents from the information they had given him. Can you find out the exact age of mamma?
41.—THEIR AGES.
"My husband's age," remarked a lady the other day, "is represented by the figures of my own age reversed. He is my senior, and the difference between our ages is one-eleventh of their sum."
42.—THE FAMILY AGES.
When the Smileys recently received a visit from the favourite uncle, the fond parents had all the five children brought into his presence. First came Billie and little Gertrude, and the uncle was informed that the boy was exactly twice as old as the girl. Then Henrietta arrived, and it was pointed out that the combined ages of herself and Gertrude equalled twice the age of Billie. Then Charlie came running in, and somebody remarked that now the combined ages of the two boys were exactly twice the combined ages of the two girls. The uncle was expressing his astonishment at these coincidences when Janet came in. "Ah! uncle," she exclaimed, "you have actually arrived on my twenty-first birthday!" To this Mr. Smiley added the final staggerer: "Yes, and now the combined ages of the three girls are exactly equal to twice the combined ages of the two boys." Can you give the age of each child?
43.—MRS. TIMPKINS'S AGE.
Edwin: "Do you know, when the Timpkinses married eighteen years ago Timpkins was three times as old as his wife, and to-day he is just twice as old as she?"
Angelina: "Then how old was Mrs. Timpkins on the wedding day?"
Can you answer Angelina's question?
44—A CENSUS PUZZLE.
Mr. and Mrs. Jorkins have fifteen children, all born at intervals of one year and a half. Miss Ada Jorkins, the eldest, had an objection to state her age to the census man, but she admitted that she was just seven times older than little Johnnie, the youngest of all. What was Ada's age? Do not too hastily assume that you have solved this little poser. You may find that you have made a bad blunder!
45.—MOTHER AND DAUGHTER.
"Mother, I wish you would give me a bicycle," said a girl of twelve the other day.
"I do not think you are old enough yet, my dear," was the reply. "When I am only three times as old as you are you shall have one."
Now, the mother's age is forty-five years. When may the young lady expect to receive her present?
46.—MARY AND MARMADUKE.
Marmaduke: "Do you know, dear, that in seven years' time our combined ages will be sixty-three years?"
Mary: "Is that really so? And yet it is a fact that when you were my present age you were twice as old as I was then. I worked it out last night."
Now, what are the ages of Mary and Marmaduke?
47—ROVER'S AGE.
"Now, then, Tommy, how old is Rover?" Mildred's young man asked her brother.
"Well, five years ago," was the youngster's reply, "sister was four times older than the dog, but now she is only three times as old."
Can you tell Rover's age?
48.—CONCERNING TOMMY'S AGE.
Tommy Smart was recently sent to a
Comments (0)