Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖
- Author: Henry Ernest Dudeney
- Performer: 0486204731
Book online «Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖». Author Henry Ernest Dudeney
Although the adding magic square is of such great antiquity, curiously enough the multiplying magic does not appear to have been mentioned until the end of the eighteenth century, when it was referred to slightly by one writer and then forgotten until I revived it in Tit-Bits in 1897. The dividing magic was apparently first discussed by me in The Weekly Dispatch in June 1898. The subtracting magic is here introduced for the first time. It will now be convenient to deal with all four kinds of magic squares together.
In these four diagrams we have examples in the third order of adding, subtracting, multiplying, and dividing squares. In the first the constant, 15, is obtained by the addition of the rows, columns, and two diagonals. In the second case you get the constant, 5, by subtracting the first number in a line from the second, and the result from the third. You can, of course, perform the operation in either direction; but, in order to avoid negative numbers, it is more convenient simply to deduct the middle number from the sum of the two extreme numbers. This is, in effect, the same thing. It will be seen that the constant of the adding square is n times that of the subtracting square derived from it, where n is the number of cells in the side of square. And the manner of derivation here is simply to reverse the two diagonals. Both squares are "associated"—a term I have explained in the introductory article to this department.
The third square is a multiplying magic. The constant, 216, is obtained by multiplying together the three numbers in any line. It is "associated" by multiplication, instead of by addition. It is here necessary to remark that in an adding square it is not essential that the nine numbers should be consecutive. Write down any nine numbers in this way—
so that the horizontal differences are all alike and the vertical differences also alike (here 2 and 3), and these numbers will form an adding magic square. By making the differences 1 and 3 we, of course, get consecutive numbers—a particular case, and nothing more. Now, in the case of the multiplying square we must take these numbers in geometrical instead of arithmetical progression, thus—
Here each successive number in the rows is multiplied by 3, and in the columns by 2. Had we multiplied by 2 and 8 we should get the regular geometrical progression, 1, 2, 4, 8, 16, 32, 64, 128, and 256, but I wish to avoid high numbers. The numbers are arranged in the square in the same order as in the adding square.
The fourth diagram is a dividing magic square. The constant 6 is here obtained by dividing the second number in a line by the first (in either direction) and the third number by the quotient. But, again, the process is simplified by dividing the product of the two extreme numbers by the middle number. This square is also "associated" by multiplication. It is derived from the multiplying square by merely reversing the diagonals, and the constant of the multiplying square is the cube of that of the dividing square derived from it.
The next set of diagrams shows the solutions for the fifth order of square. They are all "associated" in the same way as before. The subtracting square is derived from the adding square by reversing the diagonals and exchanging opposite numbers in the centres of the borders, and the constant of one is again n times that of the other. The dividing square is derived from the multiplying square in the same way, and the constant of the latter is the 5th power (that is the nth) of that of the former.
These squares are thus quite easy for odd orders. But the reader will probably find some difficulty over the even orders, concerning which I will leave him to make his own researches, merely propounding two little problems.
407.—TWO NEW MAGIC SQUARES.
Construct a subtracting magic square with the first sixteen whole numbers that shall be "associated" by subtraction. The constant is, of course, obtained by subtracting the first number from the second in line, the result from the third, and the result again from the fourth. Also construct a dividing magic square of the same order that shall be "associated" by division. The constant is obtained by dividing the second number in a line by the first, the third by the quotient, and the fourth by the next quotient.
408.—MAGIC SQUARES OF TWO DEGREES.
While reading a French mathematical work I happened to come across, the following statement: "A very remarkable magic square of 8, in two degrees, has been constructed by M. Pfeffermann. In other words, he has managed to dispose the sixty-four first numbers on the squares of a chessboard in such a way that the sum of the numbers in every line, every column, and in each of the two diagonals, shall be the same; and more, that if one substitutes for all the numbers their squares, the square still remains magic." I at once set to work to solve this problem, and, although it proved a very hard nut, one was rewarded by the discovery of some curious and beautiful laws that govern it. The reader may like to try his hand at the puzzle.
MAGIC SQUARES OF PRIMES.The problem of constructing magic squares with prime numbers only was first discussed by myself in The Weekly Dispatch for 22nd July and 5th August 1900; but during the last three or four years it has received great attention from American mathematicians. First, they have sought to form these squares with the lowest possible constants. Thus, the first nine prime numbers, 1 to 23 inclusive, sum to 99, which (being divisible by 3) is theoretically a suitable series; yet it has been demonstrated that the lowest possible constant is 111, and the required series as follows: 1, 7, 13, 31, 37, 43, 61, 67, and 73. Similarly, in the case of the fourth order, the lowest series of primes that are "theoretically suitable" will not serve. But in every other order, up to the 12th inclusive, magic squares have been constructed with the lowest series of primes theoretically possible. And the 12th is the lowest order in which a straight series of prime numbers, unbroken, from 1 upwards has been made to work. In other words, the first 144 odd prime numbers have actually been arranged in magic form. The following summary is taken from The Monist (Chicago) for October 1913:—
of Square. Totals
of Series. Lowest
Constants. Squares
made by— 3rd 333 111 Henry E.
Dudeney (1900). 4th 408 102 Ernest Bergholt
and C. D. Shuldham. 5th 1065 213 H. A. Sayles. 6th 2448 408 C. D. Shuldham
and J. N. Muncey. 7th 4893 699 do. 8th 8912 1114 do. 9th 15129 1681 do. 10th 24160 2416 J. N. Muncey. 11th 36095 3355 do. 12th 54168 4514 do.
For further details the reader should consult the article itself, by W. S. Andrews and H. A. Sayles.
These same investigators have also performed notable feats in constructing associated and bordered prime magics, and Mr. Shuldham has sent me a remarkable paper in which he gives examples of Nasik squares constructed with primes for all orders from the 4th to the 10th, with the exception of the 3rd (which is clearly impossible) and the 9th, which, up to the time of writing, has baffled all attempts.
409.—THE BASKETS OF PLUMS.
This is the form in which I first introduced the question of magic squares with prime numbers. I will here warn the reader that there is a little trap.
A fruit merchant had nine baskets. Every basket contained plums (all sound and ripe), and the number in every basket was different. When placed as shown in the illustration they formed a magic square, so that if he took any three baskets in a line in the eight possible directions there would always be the same number of plums. This part of the puzzle is easy enough to understand. But what follows seems at first sight a little queer.
The merchant told one of his men to distribute the contents of any basket he chose among some children, giving plums to every child so that each should receive an equal number. But the man found it quite impossible, no matter which basket he selected and no matter how many children he included in the treat. Show, by giving contents of the nine baskets, how this could come about.
410.—THE MANDARIN'S "T" PUZZLE.
Before Mr. Beauchamp Cholmondely Marjoribanks set out on his tour in the Far East, he prided himself on his knowledge of magic squares, a subject that he had made his special hobby; but he soon discovered that he had never really touched more than the fringe of the subject, and that the wily Chinee could beat him easily. I present a little problem that one learned mandarin propounded to our traveller, as depicted on the last page.
The Chinaman, after remarking that the construction of the ordinary magic square of twenty-five cells is "too velly muchee easy," asked our countryman so to place the numbers 1 to 25 in the square that every column, every row, and each of the two diagonals should add up 65, with only prime numbers on the shaded "T." Of course the prime numbers available are 1, 2, 3, 5, 7, 11, 13, 17, 19, and 23, so you are at liberty to select any nine of these that will serve your purpose. Can you construct this curious little magic square?
411.—A MAGIC SQUARE OF COMPOSITES.
As we have just discussed the construction of magic squares with prime numbers, the following forms an interesting companion problem. Make a magic square with nine consecutive composite numbers—the smallest possible.
412.—THE MAGIC KNIGHT'S TOUR.
Here is a problem that has never yet been solved, nor has its impossibility been demonstrated. Play the knight once to every square of the chessboard in a complete tour, numbering the squares in the order visited, so that when completed the square shall be "magic," adding up to 260 in every column, every row, and each of the two long diagonals. I shall give the best answer that I have been able to obtain, in which there is a slight error in the diagonals alone. Can a perfect solution be found? I am convinced that it cannot, but it is only a "pious opinion."
MAZES AND HOW TO THREAD THEM."In wandering mazes lost."
Paradise Lost.
The Old English word "maze," signifying a labyrinth, probably comes from the Scandinavian, but its origin is somewhat uncertain. The late Professor Skeat thought
Comments (0)