The Story of the Heavens by Sir Robert Stawell Ball (best detective novels of all time .txt) 📖
Download in Format:
- Author: Sir Robert Stawell Ball
Book online «The Story of the Heavens by Sir Robert Stawell Ball (best detective novels of all time .txt) 📖». Author Sir Robert Stawell Ball
comets possess very little actinic power. It has been estimated that moonlight possesses an intensity 300,000 times greater than that of a comet where the purposes of photography are concerned.
Another of the bodies of this class which have received great and deserved attention was that discovered in the southern hemisphere early in September, 1882. It increased so much in brilliancy that it was seen in daylight by Mr. Common on the 17th of that month, while on the same day the astronomers at the Cape of Good Hope were fortunate enough to have observed the body actually approach the sun's limb, where it ceased to be visible. We know that the comet must have passed between the earth and the sun, and it is very interesting to learn from the Cape observers that it was totally invisible when it was actually projected on the sun's disc. The following day it was again visible to the naked eye in full daylight, not far from the sun, and valuable spectroscopic observations were secured at Dunecht and Palermo. At that time the comet was rushing through the part of its orbit closest to the sun, and about a week later it began to be visible in the morning before sunrise, near the eastern horizon, exhibiting a fine long tail. (_See_ Plate XVII.) The nucleus gradually lengthened until it broke into four separate pieces, lying in a straight line, while the comet's head became enveloped in a sort of faint, nebulous tube, pointing towards the sun. Several small detached nebulous masses became also visible, which travelled along with the comet, though not with the same velocity. The comet became invisible to the naked eye in February, and was last observed telescopically in South America on the 1st June, 1883.
There is a remarkable resemblance between the orbit of this comet and the orbits in which the comet of 1668, the great comet of 1843, and a great comet seen in 1880 in the southern hemisphere, travelled round the sun. In fact, these four comets moved along very nearly the same track and rushed round the sun within a couple of hundred thousand miles of the surface of the photosphere. It is also possible that the comet which, according to Aristotle, appeared in the year 372 B.C. followed the same orbit. And yet we cannot suppose that all these were apparitions of one and the same comet, as the observations of the comet of 1882 give the period of revolution of that body equal to about 772 years. It is not impossible that the comets of 1843 and 1880 are one and the same, but in both years the observations extend over too short a time to enable us to decide whether the orbit was a parabola or an ellipse. But as the comet of 1882 was in any case a distinct body, it seems more likely that we have here a family of comets approaching the sun from the same region of space and pursuing almost the same course. We know a few other instances of such resemblances between the orbits of distinct comets.
Of other interesting comets seen within the last few years we may mention one discovered by Mr. Holmes in London on the 6th November, 1892. It was then situated not far from the bright nebula in the constellation Andromeda, and like it was just visible to the naked eye. The comet became gradually fainter and more diffused, but on the 16th January following it appeared suddenly with a central condensation, like a star of the eighth magnitude, surrounded by a small coma. Gradually it expanded again, and grew fainter, until it was last observed on the 6th April.[32] The orbit was found to be an ellipse more nearly circular than the orbit of any other known comet, the period being nearly seven years. Another comet of 1892 is remarkable as having been discovered by Professor Barnard, of the Lick Observatory, on a photograph of a region in Aquila; he was at once able to distinguish the comet from a nebula by its motion.
Since 1864 the light of every comet which has made its appearance has been analysed by the spectroscope. The slight surface-brightness of these bodies renders it necessary to open the slit of the spectroscope rather wide, and the dispersion employed cannot be very great, which again makes accurate measurements difficult. The spectrum of a comet is chiefly characterised by three bright bands shading gradually off towards the violet, and sharply defined on the side towards the red. This appearance is caused by a large number of fine and close lines, whose intensity and distance apart decrease towards the violet. These three bands reveal the existence of hydrocarbon in comets.
The important _role_ which we thus find carbon playing in the constitution of comets is especially striking when we reflect on the significance of the same element on the earth. We see it as the chief constituent of all vegetable life, we find it to be invariably present in animal life. It is an interesting fact that this element, of such transcendent importance on the earth, should now have been proved to be present in these wandering bodies. The hydrocarbon bands are, however, not always the only features visible in cometary spectra. In a comet seen in the spring months of 1882, Professor Copeland discovered that a new bright yellow line, coinciding in position with the D-line of sodium, had suddenly appeared, and it was subsequently, both by him and by other observers, seen beautifully double. In fact, sodium was so strongly represented in this comet, that both the head and the tail could be perfectly well seen in sodium light by merely opening the slit of the spectroscope very wide, just as a solar prominence may be seen in hydrogen light. The sodium line attained its greatest brilliance at the time when the comet was nearest to the sun, while the hydrocarbon bands were either invisible or very faint. The same connection between the intensity of the sodium line and the distance from the sun was noticed in the great September comet of 1882.
The spectrum of the great comet of 1882 was observed by Copeland and Lohse on the 18th September in daylight, and, in addition to the sodium line, they saw a number of other bright lines, which seemed to be due to iron vapour, while the only line of manganese visible at the temperature of a Bunsen burner was also seen. This very remarkable observation was made less than a day after the perihelion passage, and illustrates the wonderful activity in the interior of a comet when very close to the sun.
In addition to the bright lines comets generally show a faint continuous spectrum, in which dark Fraunhofer lines can occasionally be distinguished. Of course, this shows that the continuous spectrum is to a great extent due to reflected sunlight, but there is no doubt that part of it is often due to light actually developed in the comets. This was certainly the case in the first comet of 1884, as a sudden outburst of light in this body was accompanied by a considerable increase of brightness of the continuous spectrum. A change in the relative brightness of the three hydrocarbon bands indicated a considerable rise of temperature, during the continuance of which the comet emitted white light.
As comets are much nearer to the earth than the stars, it will occasionally happen that the comet must arrive at a position directly between the earth and a star. There is quite a similar phenomenon in the movement of the moon. A star is frequently occulted in this way, and the observations of such phenomena are familiar to astronomers; but when a comet passes in front of a star the circumstances are widely different. The star is indeed seen nearly as well through the comet as it would be if the comet were entirely out of the way. This has often been noticed. One of the most celebrated observations of this kind was made by the late Sir John Herschel on Biela's comet, which is one of the periodic class, and will be alluded to in the next chapter. The illustrious astronomer saw on one occasion this object pass over a star cluster. It consisted of excessively minute stars, which could only be seen by a powerful telescope, such as the one Sir John was using. The faintest haze or the merest trace of a cloud would have sufficed to hide all the stars. It was therefore with no little interest that the astronomer watched the progress of Biela's comet. Gradually the wanderer encroached on the group of stars, so that if it had any appreciable solidity the numerous twinkling points would have been completely screened. But what were the facts? Down to the most minute star in that cluster, down to the smallest point of light which the great telescope could show, every object in the group was distinctly seen to twinkle right through the mass of Biela's comet.
This was an important observation. We must recollect that the veil drawn between the cluster and the telescope was not a thin curtain; it was a volume of cometary substance many thousands of miles in thickness. Contrast, then, the almost inconceivable tenuity of a comet with the clouds to which we are accustomed. A cloud a few hundred feet thick will hide not only the stars, but even the great sun himself. The lightest haze that ever floated in a summer sky would do more to screen the stars from our view than would one hundred thousand miles of such cometary material as was here interposed.
The great comet of Donati passed over many stars which were visible distinctly through its tail. Among these stars was a very bright one--the well-known Arcturus. The comet, fortunately, happened to pass over Arcturus, and though nearly the densest part of the comet was interposed between the earth and the star, yet Arcturus twinkled on with undiminished lustre through the thickness of this stupendous curtain. Recent observations have, however, shown that stars in some cases experience change in lustre when the denser part of the comet passes over them. It is, indeed, difficult to imagine that a star would remain visible if the nucleus of a really large comet passed over it; but it does not seem that an opportunity of testing this supposition has yet arisen.
As a comet contains transparent gaseous material we might expect that the place of a star would be deranged when the comet approached it. The refractive power of air is very considerable. When we look at the sunset, we see the sun appearing to pass below the horizon; yet the sun has actually sunk beneath the horizon before any part of its disk appears to have commenced its descent. The refractive power of the air bends the luminous rays round and shows the sun, though it is directly screened by the intervening obstacles. The refractive power of the material of comets has been carefully tested. A comet has been observed to approach two stars; one of which was seen through the comet, while the other could be observed directly. If the body had any appreciable quantity of gas in its composition the relative places of the two stars would be altered. This question has been more than once submitted to the test of actual measurement. It has sometimes been found that no appreciable change of position could be detected, and that accordingly in such cases the comet has no perceptible density. Careful measurements of the great comet in 1881 showed, however, that in the neighbourhood of the nucleus there was some refractive power, though quite insignificant in comparison with the refraction of our atmosphere.
From these considerations it will probably be at once admitted that the _mass_ of
Another of the bodies of this class which have received great and deserved attention was that discovered in the southern hemisphere early in September, 1882. It increased so much in brilliancy that it was seen in daylight by Mr. Common on the 17th of that month, while on the same day the astronomers at the Cape of Good Hope were fortunate enough to have observed the body actually approach the sun's limb, where it ceased to be visible. We know that the comet must have passed between the earth and the sun, and it is very interesting to learn from the Cape observers that it was totally invisible when it was actually projected on the sun's disc. The following day it was again visible to the naked eye in full daylight, not far from the sun, and valuable spectroscopic observations were secured at Dunecht and Palermo. At that time the comet was rushing through the part of its orbit closest to the sun, and about a week later it began to be visible in the morning before sunrise, near the eastern horizon, exhibiting a fine long tail. (_See_ Plate XVII.) The nucleus gradually lengthened until it broke into four separate pieces, lying in a straight line, while the comet's head became enveloped in a sort of faint, nebulous tube, pointing towards the sun. Several small detached nebulous masses became also visible, which travelled along with the comet, though not with the same velocity. The comet became invisible to the naked eye in February, and was last observed telescopically in South America on the 1st June, 1883.
There is a remarkable resemblance between the orbit of this comet and the orbits in which the comet of 1668, the great comet of 1843, and a great comet seen in 1880 in the southern hemisphere, travelled round the sun. In fact, these four comets moved along very nearly the same track and rushed round the sun within a couple of hundred thousand miles of the surface of the photosphere. It is also possible that the comet which, according to Aristotle, appeared in the year 372 B.C. followed the same orbit. And yet we cannot suppose that all these were apparitions of one and the same comet, as the observations of the comet of 1882 give the period of revolution of that body equal to about 772 years. It is not impossible that the comets of 1843 and 1880 are one and the same, but in both years the observations extend over too short a time to enable us to decide whether the orbit was a parabola or an ellipse. But as the comet of 1882 was in any case a distinct body, it seems more likely that we have here a family of comets approaching the sun from the same region of space and pursuing almost the same course. We know a few other instances of such resemblances between the orbits of distinct comets.
Of other interesting comets seen within the last few years we may mention one discovered by Mr. Holmes in London on the 6th November, 1892. It was then situated not far from the bright nebula in the constellation Andromeda, and like it was just visible to the naked eye. The comet became gradually fainter and more diffused, but on the 16th January following it appeared suddenly with a central condensation, like a star of the eighth magnitude, surrounded by a small coma. Gradually it expanded again, and grew fainter, until it was last observed on the 6th April.[32] The orbit was found to be an ellipse more nearly circular than the orbit of any other known comet, the period being nearly seven years. Another comet of 1892 is remarkable as having been discovered by Professor Barnard, of the Lick Observatory, on a photograph of a region in Aquila; he was at once able to distinguish the comet from a nebula by its motion.
Since 1864 the light of every comet which has made its appearance has been analysed by the spectroscope. The slight surface-brightness of these bodies renders it necessary to open the slit of the spectroscope rather wide, and the dispersion employed cannot be very great, which again makes accurate measurements difficult. The spectrum of a comet is chiefly characterised by three bright bands shading gradually off towards the violet, and sharply defined on the side towards the red. This appearance is caused by a large number of fine and close lines, whose intensity and distance apart decrease towards the violet. These three bands reveal the existence of hydrocarbon in comets.
The important _role_ which we thus find carbon playing in the constitution of comets is especially striking when we reflect on the significance of the same element on the earth. We see it as the chief constituent of all vegetable life, we find it to be invariably present in animal life. It is an interesting fact that this element, of such transcendent importance on the earth, should now have been proved to be present in these wandering bodies. The hydrocarbon bands are, however, not always the only features visible in cometary spectra. In a comet seen in the spring months of 1882, Professor Copeland discovered that a new bright yellow line, coinciding in position with the D-line of sodium, had suddenly appeared, and it was subsequently, both by him and by other observers, seen beautifully double. In fact, sodium was so strongly represented in this comet, that both the head and the tail could be perfectly well seen in sodium light by merely opening the slit of the spectroscope very wide, just as a solar prominence may be seen in hydrogen light. The sodium line attained its greatest brilliance at the time when the comet was nearest to the sun, while the hydrocarbon bands were either invisible or very faint. The same connection between the intensity of the sodium line and the distance from the sun was noticed in the great September comet of 1882.
The spectrum of the great comet of 1882 was observed by Copeland and Lohse on the 18th September in daylight, and, in addition to the sodium line, they saw a number of other bright lines, which seemed to be due to iron vapour, while the only line of manganese visible at the temperature of a Bunsen burner was also seen. This very remarkable observation was made less than a day after the perihelion passage, and illustrates the wonderful activity in the interior of a comet when very close to the sun.
In addition to the bright lines comets generally show a faint continuous spectrum, in which dark Fraunhofer lines can occasionally be distinguished. Of course, this shows that the continuous spectrum is to a great extent due to reflected sunlight, but there is no doubt that part of it is often due to light actually developed in the comets. This was certainly the case in the first comet of 1884, as a sudden outburst of light in this body was accompanied by a considerable increase of brightness of the continuous spectrum. A change in the relative brightness of the three hydrocarbon bands indicated a considerable rise of temperature, during the continuance of which the comet emitted white light.
As comets are much nearer to the earth than the stars, it will occasionally happen that the comet must arrive at a position directly between the earth and a star. There is quite a similar phenomenon in the movement of the moon. A star is frequently occulted in this way, and the observations of such phenomena are familiar to astronomers; but when a comet passes in front of a star the circumstances are widely different. The star is indeed seen nearly as well through the comet as it would be if the comet were entirely out of the way. This has often been noticed. One of the most celebrated observations of this kind was made by the late Sir John Herschel on Biela's comet, which is one of the periodic class, and will be alluded to in the next chapter. The illustrious astronomer saw on one occasion this object pass over a star cluster. It consisted of excessively minute stars, which could only be seen by a powerful telescope, such as the one Sir John was using. The faintest haze or the merest trace of a cloud would have sufficed to hide all the stars. It was therefore with no little interest that the astronomer watched the progress of Biela's comet. Gradually the wanderer encroached on the group of stars, so that if it had any appreciable solidity the numerous twinkling points would have been completely screened. But what were the facts? Down to the most minute star in that cluster, down to the smallest point of light which the great telescope could show, every object in the group was distinctly seen to twinkle right through the mass of Biela's comet.
This was an important observation. We must recollect that the veil drawn between the cluster and the telescope was not a thin curtain; it was a volume of cometary substance many thousands of miles in thickness. Contrast, then, the almost inconceivable tenuity of a comet with the clouds to which we are accustomed. A cloud a few hundred feet thick will hide not only the stars, but even the great sun himself. The lightest haze that ever floated in a summer sky would do more to screen the stars from our view than would one hundred thousand miles of such cometary material as was here interposed.
The great comet of Donati passed over many stars which were visible distinctly through its tail. Among these stars was a very bright one--the well-known Arcturus. The comet, fortunately, happened to pass over Arcturus, and though nearly the densest part of the comet was interposed between the earth and the star, yet Arcturus twinkled on with undiminished lustre through the thickness of this stupendous curtain. Recent observations have, however, shown that stars in some cases experience change in lustre when the denser part of the comet passes over them. It is, indeed, difficult to imagine that a star would remain visible if the nucleus of a really large comet passed over it; but it does not seem that an opportunity of testing this supposition has yet arisen.
As a comet contains transparent gaseous material we might expect that the place of a star would be deranged when the comet approached it. The refractive power of air is very considerable. When we look at the sunset, we see the sun appearing to pass below the horizon; yet the sun has actually sunk beneath the horizon before any part of its disk appears to have commenced its descent. The refractive power of the air bends the luminous rays round and shows the sun, though it is directly screened by the intervening obstacles. The refractive power of the material of comets has been carefully tested. A comet has been observed to approach two stars; one of which was seen through the comet, while the other could be observed directly. If the body had any appreciable quantity of gas in its composition the relative places of the two stars would be altered. This question has been more than once submitted to the test of actual measurement. It has sometimes been found that no appreciable change of position could be detected, and that accordingly in such cases the comet has no perceptible density. Careful measurements of the great comet in 1881 showed, however, that in the neighbourhood of the nucleus there was some refractive power, though quite insignificant in comparison with the refraction of our atmosphere.
From these considerations it will probably be at once admitted that the _mass_ of
Free ebook «The Story of the Heavens by Sir Robert Stawell Ball (best detective novels of all time .txt) 📖» - read online now
Similar e-books:
Comments (0)