The Origin of Species by means of Natural Selection (6th ed) by Charles Darwin (inspirational novels .txt) 📖
- Author: Charles Darwin
- Performer: -
Book online «The Origin of Species by means of Natural Selection (6th ed) by Charles Darwin (inspirational novels .txt) 📖». Author Charles Darwin
CHAPTER X.
ON THE IMPERFECTION OF THE GEOLOGICAL RECORD.
On the absence of intermediate varieties at the present day — On the nature of extinct intermediate varieties; on their number — On the lapse of time, as inferred from the rate of denudation and of deposition number — On the lapse of time as estimated by years — On the poorness of our palaeontological collections — On the intermittence of geological formations — On the denudation of granitic areas — On the absence of intermediate varieties in any one formation — On the sudden appearance of groups of species — On their sudden appearance in the lowest known fossiliferous strata — Antiquity of the habitable earth.
In the sixth chapter I enumerated the chief objections which might be justly urged against the views maintained in this volume. Most of them have now been discussed. One, namely, the distinctness of specific forms and their not being blended together by innumerable transitional links, is a very obvious difficulty. I assigned reasons why such links do not commonly occur at the present day under the circumstances apparently most favourable for their presence, namely, on an extensive and continuous area with graduated physical conditions. I endeavoured to show, that the life of each species depends in a more important manner on the presence of other already defined organic forms, than on climate, and, therefore, that the really governing conditions of life do not graduate away quite insensibly like heat or moisture. I endeavoured, also, to show that intermediate varieties, from existing in lesser numbers than the forms which they connect, will generally be beaten out and exterminated during the course of further modification and improvement. The main cause, however, of innumerable intermediate links not now occurring everywhere throughout nature depends, on the very process of natural selection, through which new varieties continually take the places of and supplant their parent-forms.
But just in proportion as this process of extermination has acted on an enormous scale, so must the number of intermediate varieties, which have formerly existed, be truly enormous. Why then is not every geological formation and every stratum full of such intermediate links? Geology assuredly does not reveal any such finely graduated organic chain; and this, perhaps, is the most obvious and serious objection which can be urged against my theory. The explanation lies, as I believe, in the extreme imperfection of the geological record.
In the first place, it should always be borne in mind what sort of intermediate forms must, on the theory, have formerly existed. I have found it difficult, when looking at any two species, to avoid picturing to myself forms DIRECTLY intermediate between them. But this is a wholly false view; we should always look for forms intermediate between each species and a common but unknown progenitor; and the progenitor will generally have differed in some respects from all its modified descendants.
To give a simple illustration: the fantail and pouter pigeons are both descended from the rock-pigeon; if we possessed all the intermediate varieties which have ever existed, we should have an extremely close series between both and the rock-pigeon; but we should have no varieties directly intermediate between the fantail and pouter; none, for instance, combining a tail somewhat expanded with a crop somewhat enlarged, the characteristic features of these two breeds. These two breeds, moreover, have become so much modified, that, if we had no historical or indirect evidence regarding their origin, it would not have been possible to have determined from a mere comparison of their structure with that of the rock-pigeon, C. livia, whether they had descended from this species or from some other allied species, such as C. oenas.
So with natural species, if we look to forms very distinct, for instance to the horse and tapir, we have no reason to suppose that links directly intermediate between them ever existed, but between each and an unknown common parent. The common parent will have had in its whole organisation much general resemblance to the tapir and to the horse; but in some points of structure may have differed considerably from both, even perhaps more than they differ from each other. Hence, in all such cases, we should be unable to recognise the parent-form of any two or more species, even if we closely compared the structure of the parent with that of its modified descendants, unless at the same time we had a nearly perfect chain of the intermediate links.
It is just possible, by the theory, that one of two living forms might have descended from the other; for instance, a horse from a tapir; and in this case DIRECT intermediate links will have existed between them. But such a case would imply that one form had remained for a very long period unaltered, whilst its descendants had undergone a vast amount of change; and the principle of competition between organism and organism, between child and parent, will render this a very rare event; for in all cases the new and improved forms of life tend to supplant the old and unimproved forms.
By the theory of natural selection all living species have been connected with the parent-species of each genus, by differences not greater than we see between the natural and domestic varieties of the same species at the present day; and these parent-species, now generally extinct, have in their turn been similarly connected with more ancient forms; and so on backwards, always converging to the common ancestor of each great class. So that the number of intermediate and transitional links, between all living and extinct species, must have been inconceivably great. But assuredly, if this theory be true, such have lived upon the earth.
ON THE LAPSE OF TIME, AS INFERRED FROM THE RATE OF DEPOSITION AND EXTENT OF
DENUDATION.
Independently of our not finding fossil remains of such infinitely numerous connecting links, it may be objected that time cannot have sufficed for so great an amount of organic change, all changes having been effected slowly.
It is hardly possible for me to recall to the reader who is not a practical geologist, the facts leading the mind feebly to comprehend the lapse of time. He who can read Sir Charles Lyell’s grand work on the Principles of Geology, which the future historian will recognise as having produced a revolution in natural science, and yet does not admit how vast have been the past periods of time, may at once close this volume. Not that it suffices to study the Principles of Geology, or to read special treatises by different observers on separate formations, and to mark how each author attempts to give an inadequate idea of the duration of each formation, or even of each stratum. We can best gain some idea of past time by knowing the agencies at work; and learning how deeply the surface of the land has been denuded, and how much sediment has been deposited. As Lyell has well remarked, the extent and thickness of our sedimentary formations are the result and the measure of the denudation which the earth’s crust has elsewhere undergone. Therefore a man should examine for himself the great piles of superimposed strata, and watch the rivulets bringing down mud, and the waves wearing away the sea-cliffs, in order to comprehend something about the duration of past time, the monuments of which we see all around us.
It is good to wander along the coast, when formed of moderately hard rocks, and mark the process of degradation. The tides in most cases reach the cliffs only for a short time twice a day, and the waves eat into them only when they are charged with sand or pebbles; for there is good evidence that pure water effects nothing in wearing away rock. At last the base of the cliff is undermined, huge fragments fall down, and these remaining fixed, have to be worn away atom by atom, until after being reduced in size they can be rolled about by the waves, and then they are more quickly ground into pebbles, sand, or mud. But how often do we see along the bases of retreating cliffs rounded boulders, all thickly clothed by marine productions, showing how little they are abraded and how seldom they are rolled about! Moreover, if we follow for a few miles any line of rocky cliff, which is undergoing degradation, we find that it is only here and there, along a short length or round a promontory, that the cliffs are at the present time suffering. The appearance of the surface and the vegetation show that elsewhere years have elapsed since the waters washed their base.
We have, however, recently learned from the observations of Ramsay, in the van of many excellent observers—of Jukes, Geikie, Croll and others, that subaerial degradation is a much more important agency than coast-action, or the power of the waves. The whole surface of the land is exposed to the chemical action of the air and of the rainwater, with its dissolved carbonic acid, and in colder countries to frost; the disintegrated matter is carried down even gentle slopes during heavy rain, and to a greater extent than might be supposed, especially in arid districts, by the wind; it is then transported by the streams and rivers, which, when rapid deepen their channels, and triturate the fragments. On a rainy day, even in a gently undulating country, we see the effects of subaerial degradation in the muddy rills which flow down every slope. Messrs. Ramsay and Whitaker have shown, and the observation is a most striking one, that the great lines of escarpment in the Wealden district and those ranging across England, which formerly were looked at as ancient sea-coasts, cannot have been thus formed, for each line is composed of one and the same formation, while our sea-cliffs are everywhere formed by the intersection of various formations. This being the case, we are compelled to admit that the escarpments owe their origin in chief part to the rocks of which they are composed, having resisted subaerial denudation better than the surrounding surface; this surface consequently has been gradually lowered, with the lines of harder rock left projecting. Nothing impresses the mind with the vast duration of time, according to our ideas of time, more forcibly than the conviction thus gained that subaerial agencies, which apparently have so little power, and which seem to work so slowly, have produced great results.
When thus impressed with the slow rate at which the land is worn away through subaerial and littoral action, it is good, in order to appreciate the past duration of time, to consider, on the one hand, the masses of rock which have been removed over many extensive areas, and on the other hand the thickness of our sedimentary formations. I remember having been much struck when viewing volcanic islands, which have been worn by the waves and pared all round into perpendicular cliffs of one or two thousand feet in height; for the gentle slope of the lava-streams, due to their formerly liquid state, showed at a glance how far the hard, rocky beds had once extended into the open ocean. The same story is told still more plainly by faults—those great cracks along which the strata have been upheaved on one side, or thrown down on the other, to the height or depth of thousands of feet; for since the crust cracked, and it makes no great difference whether the upheaval was sudden, or, as most geologists now believe, was slow and effected by many starts, the surface of the land has been so completely planed down that no trace of these vast dislocations is externally visible.
The Craven fault, for instance, extends for upward of thirty miles, and along this line the vertical displacement of the strata varies
Comments (0)