The Story of the Heavens by Sir Robert Stawell Ball (best detective novels of all time .txt) 📖
Download in Format:
- Author: Sir Robert Stawell Ball
Book online «The Story of the Heavens by Sir Robert Stawell Ball (best detective novels of all time .txt) 📖». Author Sir Robert Stawell Ball
but it cannot be doubted that there is a wide range of temperature among the different bodies. Some are hotter than others. The stars and suns are perhaps the hottest of all; but it is not improbable that they may be immeasurably outnumbered by the cold and dark bodies of the universe, which are to us invisible, and only manifest their existence in an indirect and casual manner.
The law of cooling tells us that every body radiates heat, and that the quantity of heat which it radiates increases when the temperature of the body increases relatively to the surrounding medium. This law appears to be universal. It is obeyed on the earth, and it would seem that it must be equally obeyed by every other body in space. We thus see that each of the planets and each of the stars is continuously pouring forth in all directions a never-ceasing stream of heat. This radiation of heat is productive of very momentous consequences. Let us study them, for instance, in the case of the sun.
Our great luminary emits an incessant flood of radiant heat in all directions. A minute fraction of that heat is intercepted by our earth, and is, directly or indirectly, the source of all life, and of nearly all movement, on our earth. To pour forth heat as the sun does, it is necessary that his temperature be enormously high. And there are some facts which permit us to form an estimate of what that temperature must actually be.
It is difficult to form any numerical statement of the actual temperature of the sun. The intensity of that temperature vastly transcends the greatest artificial heat, and any attempt to clothe such estimates in figures is necessarily very precarious. But assuming the greatest artificial temperature to be about 4,000 deg. Fahr., we shall probably be well within the truth if we state the effective temperature of the sun to be about 14,000 deg. Fahr. This is the result of a recent investigation by Messrs. Wilson and Gray, which seems to be entitled to considerable weight.
The copious outflow of heat from the sun corresponds with its enormous temperature. We can express the amount of heat in various ways, but it must be remembered that considerable uncertainty still attaches to such measurements. The old method of measuring heat by the quantity of ice melted may be used as an illustration. It is computed that a shell of ice 43-1/2 feet thick surrounding the whole sun would in one minute be melted by the sun's heat underneath. A somewhat more elegant illustration was also given by Sir John Herschel, who showed that if a cylindrical glacier 45 miles in diameter were to be continually flowing into the sun with the velocity of light, the end of that glacier would be melted as quickly as it advanced. From each square foot in the surface of the sun emerges a quantity of heat as great as could be produced by the daily combustion of sixteen tons of coal. This is, indeed, an amount of heat which, properly transformed into work, would keep an engine of many hundreds of horse-power running from one year's end to the other. The heat radiated from a few acres on the sun would be adequate to drive all the steam engines in the world. When we reflect on the vast intensity of the radiation from each square foot of the sun's surface, and when we combine with this the stupendous dimensions of the sun, imagination fails to realise how vast must be the actual expenditure of heat.
In presence of the prodigal expenditure of the sun's heat, we are tempted to ask a question which has the most vital interest for the earth and its inhabitants. We live from hour to hour by the sun's splendid generosity; and, therefore, it is important for us to know what security we possess for the continuance of his favours. When we witness the terrific disbursement of the sun's heat each hour, we are compelled to ask whether our great luminary may not be exhausting its resources; and if so, what are the prospects of the future? This question we can partly answer. The whole subject is indeed of surpassing interest, and redolent with the spirit of modern scientific thought.
Our first attempt to examine this question must lie in an appeal to the facts which are attainable. We want to know whether the sun is showing any symptoms of decay. Are the days as warm and as bright now as they were last year, ten years ago, one hundred years ago? We can find no evidence of any change since the beginning of authentic records. If the sun's heat had perceptibly changed within the last two thousand years, we should expect to find corresponding changes in the distribution of plants and of animals; but no such changes have been detected. There is no reason to think that the climate of ancient Greece or of ancient Rome was appreciably different from the climates of the Greece and the Rome that we know at this day. The vine and the olive grow now where they grew two thousand years ago.
We must not, however, lay too much stress on this argument; for the effects of slight changes in the sun's heat may have been neutralised by corresponding adaptations in the pliable organisms of cultivated plants. All we can certainly conclude is that no marked change has taken place in the heat of the sun during historical time. But when we come to look back into much earlier ages, we find copious evidence that the earth has undergone great changes in climate. Geological records can on this question hardly be misinterpreted. Yet it is curious to note that these changes are hardly such as could arise from the gradual exhaustion of the sun's radiation. No doubt, in very early times we have evidence that the earth's climate must have been much warmer than at present. We had the great carboniferous period, when the temperature must almost have been tropical in Arctic latitudes. Yet it is hardly possible to cite this as evidence that the sun was then much more powerful; for we are immediately reminded of the glacial period, when our temperate zones were overlaid by sheets of solid ice, as Northern Greenland is at present. If we suppose the sun to have been hotter than it is at present to account for the vegetation which produced coal, then we ought to assume the sun to be colder than it is now to account for the glacial period. It is not reasonable to attribute such phenomena to fluctuations in the radiation from the sun. The glacial periods prove that we cannot appeal to geology in aid of the doctrine that a secular cooling of the sun is now in progress. The geological variations of climate may have been caused by changes in the earth itself, or by changes in its actual orbit; but however they have been caused, they hardly tell us much with regard to the past history of our sun.
The heat of the sun has lasted countless ages; yet we cannot credit the sun with the power of actually creating heat. We must apply to the tremendous mass of the sun the same laws which we have found by our experiments on the earth. We must ask, whence comes the heat sufficient to supply this lavish outgoing? Let us briefly recount the various suppositions that have been made.
Place two red-hot spheres of iron side by side, a large one and a small one. They have been taken from the same fire; they were both equally hot; they are both cooling, but the small sphere cools more rapidly. It speedily becomes dark, while the large sphere is still glowing, and would continue to do so for some minutes. The larger the sphere, the longer it will take to cool; and hence it has been supposed that a mighty sphere of the prodigious dimensions of our sun would, if once heated, cool gradually, but the duration of the cooling would be so long that for thousands and for millions of years it could continue to be a source of light and heat to the revolving system of planets. This suggestion will not bear the test of arithmetic. If the sun had no source of heat beyond that indicated by its high temperature, we can show that radiation would cool the sun a few degrees every year. Two thousand years would then witness a very great decrease in the sun's heat. We are certain that no such decrease can have taken place. The source of the sun's radiation cannot be found in the mere cooling of an incandescent mass.
Can the fires in the sun be maintained by combustion, analogous to that which goes on in our furnaces? Here we would seem to have a source of gigantic heat; but arithmetic also disposes of this supposition. We know that if the sun were made of even solid coal itself, and if that coal were burning in pure oxygen, the heat that could be produced would only suffice for 6,000 years. If the sun which shone upon the builders of the great Pyramid had been solid coal from surface to centre, it must by this time have been in great part burned away in the attempt to maintain its present rate of expenditure. We are thus forced to look to other sources for the supply of the sun's heat, since neither the heat of incandescence nor the heat of combustion will suffice.
There is probably--indeed, we may say certainly--one external source from which the heat of the sun is recruited. It will be necessary for us to consider this source with some care, though I think we shall find it to be merely an auxiliary of comparatively trifling moment. According to this view, the solar heat receives occasional accessions from the fall upon the sun's surface of masses of meteoric matter. There can be hardly a doubt that such masses do fall upon the sun; there is certainly no doubt that if they do, the sun must gain some heat thereby. We have experience on the earth of a very interesting kind, which illustrates the development of heat by meteoric matter. There lies a world of philosophy in a shooting star. Some of these myriad objects rush into our atmosphere and are lost; others, no doubt, rush into the sun with the same result. We also admit that the descent of a shooting star into the atmosphere of the sun must be attended with a flash of light and of heat. The heat acquired by the earth from the flashing of the shooting stars through our air is quite insensible. It has been supposed, however, that the heat accruing to the sun from the same cause may be quite sensible--nay, it has been even supposed that the sun may be re-invigorated from this source.
Here, again, we must apply the cold principles of weights and measures to estimate the plausibility of this suggestion. We first calculate the actual weight of meteoric indraught to the sun which would be adequate to sustain the fires of the sun at their present vigour. The mass of matter that would be required is so enormous that we cannot usefully express it by imperial weights; we must deal with masses of imposing magnitude. It fortunately happens that the weight of our moon is a convenient unit. Conceive that our moon--a huge globe, 2,000 miles in diameter--were crushed into a myriad of fragments, and that these fragments were allowed to rain in on the sun; there can be no doubt that this tremendous meteoric shower would contribute to the sun rather more heat than would be required to supply his radiation for a whole year.
The law of cooling tells us that every body radiates heat, and that the quantity of heat which it radiates increases when the temperature of the body increases relatively to the surrounding medium. This law appears to be universal. It is obeyed on the earth, and it would seem that it must be equally obeyed by every other body in space. We thus see that each of the planets and each of the stars is continuously pouring forth in all directions a never-ceasing stream of heat. This radiation of heat is productive of very momentous consequences. Let us study them, for instance, in the case of the sun.
Our great luminary emits an incessant flood of radiant heat in all directions. A minute fraction of that heat is intercepted by our earth, and is, directly or indirectly, the source of all life, and of nearly all movement, on our earth. To pour forth heat as the sun does, it is necessary that his temperature be enormously high. And there are some facts which permit us to form an estimate of what that temperature must actually be.
It is difficult to form any numerical statement of the actual temperature of the sun. The intensity of that temperature vastly transcends the greatest artificial heat, and any attempt to clothe such estimates in figures is necessarily very precarious. But assuming the greatest artificial temperature to be about 4,000 deg. Fahr., we shall probably be well within the truth if we state the effective temperature of the sun to be about 14,000 deg. Fahr. This is the result of a recent investigation by Messrs. Wilson and Gray, which seems to be entitled to considerable weight.
The copious outflow of heat from the sun corresponds with its enormous temperature. We can express the amount of heat in various ways, but it must be remembered that considerable uncertainty still attaches to such measurements. The old method of measuring heat by the quantity of ice melted may be used as an illustration. It is computed that a shell of ice 43-1/2 feet thick surrounding the whole sun would in one minute be melted by the sun's heat underneath. A somewhat more elegant illustration was also given by Sir John Herschel, who showed that if a cylindrical glacier 45 miles in diameter were to be continually flowing into the sun with the velocity of light, the end of that glacier would be melted as quickly as it advanced. From each square foot in the surface of the sun emerges a quantity of heat as great as could be produced by the daily combustion of sixteen tons of coal. This is, indeed, an amount of heat which, properly transformed into work, would keep an engine of many hundreds of horse-power running from one year's end to the other. The heat radiated from a few acres on the sun would be adequate to drive all the steam engines in the world. When we reflect on the vast intensity of the radiation from each square foot of the sun's surface, and when we combine with this the stupendous dimensions of the sun, imagination fails to realise how vast must be the actual expenditure of heat.
In presence of the prodigal expenditure of the sun's heat, we are tempted to ask a question which has the most vital interest for the earth and its inhabitants. We live from hour to hour by the sun's splendid generosity; and, therefore, it is important for us to know what security we possess for the continuance of his favours. When we witness the terrific disbursement of the sun's heat each hour, we are compelled to ask whether our great luminary may not be exhausting its resources; and if so, what are the prospects of the future? This question we can partly answer. The whole subject is indeed of surpassing interest, and redolent with the spirit of modern scientific thought.
Our first attempt to examine this question must lie in an appeal to the facts which are attainable. We want to know whether the sun is showing any symptoms of decay. Are the days as warm and as bright now as they were last year, ten years ago, one hundred years ago? We can find no evidence of any change since the beginning of authentic records. If the sun's heat had perceptibly changed within the last two thousand years, we should expect to find corresponding changes in the distribution of plants and of animals; but no such changes have been detected. There is no reason to think that the climate of ancient Greece or of ancient Rome was appreciably different from the climates of the Greece and the Rome that we know at this day. The vine and the olive grow now where they grew two thousand years ago.
We must not, however, lay too much stress on this argument; for the effects of slight changes in the sun's heat may have been neutralised by corresponding adaptations in the pliable organisms of cultivated plants. All we can certainly conclude is that no marked change has taken place in the heat of the sun during historical time. But when we come to look back into much earlier ages, we find copious evidence that the earth has undergone great changes in climate. Geological records can on this question hardly be misinterpreted. Yet it is curious to note that these changes are hardly such as could arise from the gradual exhaustion of the sun's radiation. No doubt, in very early times we have evidence that the earth's climate must have been much warmer than at present. We had the great carboniferous period, when the temperature must almost have been tropical in Arctic latitudes. Yet it is hardly possible to cite this as evidence that the sun was then much more powerful; for we are immediately reminded of the glacial period, when our temperate zones were overlaid by sheets of solid ice, as Northern Greenland is at present. If we suppose the sun to have been hotter than it is at present to account for the vegetation which produced coal, then we ought to assume the sun to be colder than it is now to account for the glacial period. It is not reasonable to attribute such phenomena to fluctuations in the radiation from the sun. The glacial periods prove that we cannot appeal to geology in aid of the doctrine that a secular cooling of the sun is now in progress. The geological variations of climate may have been caused by changes in the earth itself, or by changes in its actual orbit; but however they have been caused, they hardly tell us much with regard to the past history of our sun.
The heat of the sun has lasted countless ages; yet we cannot credit the sun with the power of actually creating heat. We must apply to the tremendous mass of the sun the same laws which we have found by our experiments on the earth. We must ask, whence comes the heat sufficient to supply this lavish outgoing? Let us briefly recount the various suppositions that have been made.
Place two red-hot spheres of iron side by side, a large one and a small one. They have been taken from the same fire; they were both equally hot; they are both cooling, but the small sphere cools more rapidly. It speedily becomes dark, while the large sphere is still glowing, and would continue to do so for some minutes. The larger the sphere, the longer it will take to cool; and hence it has been supposed that a mighty sphere of the prodigious dimensions of our sun would, if once heated, cool gradually, but the duration of the cooling would be so long that for thousands and for millions of years it could continue to be a source of light and heat to the revolving system of planets. This suggestion will not bear the test of arithmetic. If the sun had no source of heat beyond that indicated by its high temperature, we can show that radiation would cool the sun a few degrees every year. Two thousand years would then witness a very great decrease in the sun's heat. We are certain that no such decrease can have taken place. The source of the sun's radiation cannot be found in the mere cooling of an incandescent mass.
Can the fires in the sun be maintained by combustion, analogous to that which goes on in our furnaces? Here we would seem to have a source of gigantic heat; but arithmetic also disposes of this supposition. We know that if the sun were made of even solid coal itself, and if that coal were burning in pure oxygen, the heat that could be produced would only suffice for 6,000 years. If the sun which shone upon the builders of the great Pyramid had been solid coal from surface to centre, it must by this time have been in great part burned away in the attempt to maintain its present rate of expenditure. We are thus forced to look to other sources for the supply of the sun's heat, since neither the heat of incandescence nor the heat of combustion will suffice.
There is probably--indeed, we may say certainly--one external source from which the heat of the sun is recruited. It will be necessary for us to consider this source with some care, though I think we shall find it to be merely an auxiliary of comparatively trifling moment. According to this view, the solar heat receives occasional accessions from the fall upon the sun's surface of masses of meteoric matter. There can be hardly a doubt that such masses do fall upon the sun; there is certainly no doubt that if they do, the sun must gain some heat thereby. We have experience on the earth of a very interesting kind, which illustrates the development of heat by meteoric matter. There lies a world of philosophy in a shooting star. Some of these myriad objects rush into our atmosphere and are lost; others, no doubt, rush into the sun with the same result. We also admit that the descent of a shooting star into the atmosphere of the sun must be attended with a flash of light and of heat. The heat acquired by the earth from the flashing of the shooting stars through our air is quite insensible. It has been supposed, however, that the heat accruing to the sun from the same cause may be quite sensible--nay, it has been even supposed that the sun may be re-invigorated from this source.
Here, again, we must apply the cold principles of weights and measures to estimate the plausibility of this suggestion. We first calculate the actual weight of meteoric indraught to the sun which would be adequate to sustain the fires of the sun at their present vigour. The mass of matter that would be required is so enormous that we cannot usefully express it by imperial weights; we must deal with masses of imposing magnitude. It fortunately happens that the weight of our moon is a convenient unit. Conceive that our moon--a huge globe, 2,000 miles in diameter--were crushed into a myriad of fragments, and that these fragments were allowed to rain in on the sun; there can be no doubt that this tremendous meteoric shower would contribute to the sun rather more heat than would be required to supply his radiation for a whole year.
Free ebook «The Story of the Heavens by Sir Robert Stawell Ball (best detective novels of all time .txt) 📖» - read online now
Similar e-books:
Comments (0)