Other Worlds<br />Their Nature, Possibilities and Habitability in the Light of the Latest Discoveries by Garrett Putman Serviss (top 10 novels to read txt) 📖
- Author: Garrett Putman Serviss
Book online «Other Worlds<br />Their Nature, Possibilities and Habitability in the Light of the Latest Discoveries by Garrett Putman Serviss (top 10 novels to read txt) 📖». Author Garrett Putman Serviss
In what language they intend to converse no one has yet undertaken to tell, but the suggestion has sapiently been made that, mathematical facts being invariable, the eternal equality of two plus two with four might serve as a basis of understanding, and that a statement of that truth sent by electric taps across the ocean of ether[Pg 115] would be a convincing assurance that the inhabitants of the planet from which the message came at least enjoyed the advantages of a common-school education.
But, while speculation upon this subject rests on unverified, and at present unverifiable, assumptions, of course everybody would rejoice if such a thing were possible, for consider what zest and charm would be added to human life if messages, even of the simplest description, could be sent to and received from intelligent beings inhabiting other planets! It is because of this hold that it possesses upon the imagination, and the pleasing pictures that it conjures up, that the idea of interplanetary communication, once broached, has become so popular a topic, even though everybody sees that it should not be taken too seriously.
The subject of the atmosphere of Mars can not be dismissed without further consideration than we have yet given it, because those who think the planet uninhabitable base their opinion largely upon the[Pg 116] assumed absence of sufficient air to support life. It was long ago recognized that, other things being equal, a planet of small mass must possess a less dense atmosphere than one of large mass. Assuming that each planet originally drew from a common stock, and that the amount and density of its atmosphere is measured by its force of gravity, it can be shown that Mars should have an atmosphere less than one fifth as dense as the earth's.
Dr. Johnstone Stoney has attacked the problem of planetary atmospheres in another way. Knowing the force of gravity on a planet, it is easy to calculate the velocity with which a body, or a particle, would have to start radially from the planet in order to escape from its gravitational control. For the earth this critical velocity is about seven miles per second; for Mars about three miles per second. Estimating the velocity of the molecules of the various atmospheric gases, according to the kinetic theory, Dr. Stoney finds that some of the smaller planets, and the moon, are gravi[Pg 117]tationally incapable of retaining all of these gases in the form of an atmosphere. Among the atmospheric constituents that, according to this view, Mars would be unable permanently to retain is water vapor. Indeed, he supposes that even the earth is slowly losing its water by evaporation into space, and on Mars, owing to the slight force of gravity there, this process would go on much more rapidly, so that, in this way, we have a means of accounting for the apparent drying up of that planet, while we may be led to anticipate that at some time in the remote future the earth also will begin to suffer from lack of water, and that eventually the chasms of the sea will yawn empty and desolate under a cloudless sky.
But it is not certain that the original supply of atmospheric elements was in every case proportional to the respective force of gravity of a planet. The fact that Venus appears to have an atmosphere more extensive and denser than the earth's, although its force of gravity is a little less than that of our globe, indicates at once[Pg 118] a variation as between these two planets in the amount of atmospheric material at their disposal. This may be a detail depending upon differences in the mode, or in the stage, of their evolution. Thus, after all, Dr. Stoney's theory may be substantially correct and yet Mars may retain sufficient water to form clouds, to be precipitated in snow, and to fill its canals after each annual melting of the polar caps, because the original supply was abundant, and its escape is a gradual process, only to be completed by age-long steps.
Even though the evidence of the spectroscope, as far as it goes, seems to lend support to the theory that there is no water vapor in the atmosphere of Mars, we can not disregard the visual evidence that, nevertheless, water vapor exists there.
What are the polar caps if they are not snow? Frozen carbon dioxide, it has been suggested; but this is hardly satisfactory, for it offers no explanation of the fact that when the polar caps diminish, and in proportion as they diminish, the "seas" and[Pg 119] the canals darken and expand, whereas a reasonable explanation of the correlation of these phenomena is offered if we accept the view that the polar caps consist of snow.
Then there are many observations on record indicating the existence of clouds in Mars's atmosphere. Sometimes a considerable area of its surface has been observed to be temporarily obscured, not by dense masses of cloud such as accompany the progress of great cyclonic storms across the continents and oceans of the earth, but by comparatively thin veils of vapor such as would be expected to form in an atmosphere so comparatively rare as that of Mars. And these clouds, in some instances at least, appear, like the cirrus streaks and dapples in our own air, to float at a great elevation. Mr. Douglass, one of Mr. Lowell's associates in the observations of 1894 at Flagstaff, Arizona, observed what he believed to be a cloud over the unilluminated part of Mars's disk, which, by micrometric measurement and estimate, was drifting at an elevation of about fifteen miles above the sur[Pg 120]face of the planet. This was seen on two successive days, November 25th and November 26th, and it underwent curious fluctuations in visibility, besides moving in a northerly direction at the rate of some thirteen miles an hour. But, upon the whole, as Mr. Lowell remarks, the atmosphere of Mars is remarkably free of clouds.
The reader will remember that Mars gets a little less than half as much heat from the sun as the earth gets. This fact also has been used as an argument against the habitability of the planet. In truth, those who think that life in the solar system is confined to the earth alone insist upon an almost exact reproduction of terrestrial conditions as a sine qua non to the habitability of any other planet. Venus, they think, is too hot, and Mars too cold, as if life were rather a happy accident than the result of the operation of general laws applicable under a wide variety of conditions. All that we are really justified in asserting is that Venus may be too hot and Mars too cold for us. Of course, if we adopt the opinion[Pg 121] held by some that the temperature on Mars is constantly so low that water would remain perpetually frozen, it does throw the question of the kind of life that could be maintained there into the realm of pure conjecture.
The argument in favor of an extremely low temperature on Mars is based on the law of the diminution of radiant energy inversely as the square of the distance, together with the assumption that no qualifying circumstances, or no modification of that law, can enter into the problem. According to this view, it could be shown that the temperature on Mars never rises above -200° F. But it is a view that seems to be directly opposed to the evidence of the telescope, for all who have studied Mars under favorable conditions of observation have been impressed by the rapid and extensive changes that the appearance of its surface undergoes coincidently with the variation of the planet's seasons. It has its winter aspect and its summer aspect, perfectly distinct and recognizable, in each[Pg 122] hemisphere by turns, and whether the polar caps be snow or carbon dioxide, at any rate they melt and disappear under a high sun, thus proving that an accumulation of heat takes place.
Professor Young says: "As to the temperature of Mars we have no certain knowledge. On the one hand, we know that on account of the planet's distance from the sun the intensity of solar radiation upon its surface must be less than here in the ratio of 1 to (1.524)^2—i.e., only about 43 per cent as great as with us; its 'solar constant' must be less than 13 calories against our 30. Then, too, the low density of its atmosphere, probably less at the planet's surface than on the tops of our highest mountains, would naturally assist to keep down the temperature to a point far below the freezing-point of water. But, on the other hand, things certainly look as if the polar caps were really masses of snow and ice deposited from vapor in the planet's atmosphere, and as if these actually melted during the Martian summer, sending floods of water through[Pg 123] the channels provided for them, and causing the growth of vegetation along their banks. We are driven, therefore, to suppose either that the planet has sources of heat internal or external which are not yet explained, or else, as long ago suggested, that the polar 'snow' may possibly be composed of something else than frozen water."[4]
Even while granting the worst that can be said for the low temperature of Mars, the persistent believer in its habitability could take refuge in the results of recent experiments which have proved that bacterial life is able to resist the utmost degree of cold that can be applied, microscopic organisms perfectly retaining their vitality—or at least their power to resume it—when subjected to the fearfully low temperature of liquid air. But then he would be open to the reply that the organisms thus treated are in a torpid condition and deprived of all activity until revived by the application of heat; and the picture of a world in a[Pg 124] state of perpetual sleep is not particularly attractive, unless the fortunate prince who is destined to awake the slumbering beauty can also be introduced into the romance.[5]
To an extent which most of us, perhaps, do not fully appreciate, we are indebted for many of the pleasures and conveniences and some of the necessities of life on our planet to its faithful attendant, the moon. Neither Mercury nor Venus has a moon, but Mars has two moons. This statement, standing alone, might lead to the conclusion that, as far as the advantages a satellite can afford to the inhabitants of its master planet are[Pg 125] concerned, the people of Mars are doubly fortunate. So they would be, perhaps, if Mars's moons were bodies comparable in size with our moon, but in fact they are hardly more than a pair of very entertaining astronomical toys. The larger of the two, Phobos, is believed to be about seven miles in diameter; the smaller, Deimos, only five or six miles. Their dimensions thus resemble those of the more minute of the asteroids, and the suggestion has even been made that they may be captured asteroids which have fallen under the gravitational control of Mars.
The diameters just mentioned are Professor Pickering's estimates, based on the amount of light the little satellites reflect, for they are much too small to present measurable disks. Deimos is 14,600 miles from the center of Mars and 12,500 miles from its surface. Phobos is 5,800 miles from the center of the planet and only 3,700 from the surface. Deimos completes a revolution about the planet in thirty hours and eighteen minutes, and Phobos in the astonish[Pg 126]ingly short period—although, of course, it is in strict accord with the law of gravitation and in that sense not astonishing—of seven hours and thirty-nine minutes.
Since Mars takes twenty-four hours and thirty-seven minutes for one rotation on its axis, it is evident that Phobos goes round the planet three times in the course of a single Martian day and night, rising, contrary to the general motion of the heavens, in
Comments (0)