Other Worlds<br />Their Nature, Possibilities and Habitability in the Light of the Latest Discoveries by Garrett Putman Serviss (top 10 novels to read txt) 📖
- Author: Garrett Putman Serviss
Book online «Other Worlds<br />Their Nature, Possibilities and Habitability in the Light of the Latest Discoveries by Garrett Putman Serviss (top 10 novels to read txt) 📖». Author Garrett Putman Serviss
Down had been falling had not, by ill chance,
The strong rebuff of some tumultuous cloud.
Instinct with fire and niter, hurried him
As many miles aloft; that fury stayed,[Pg 164]
Quenched in a boggy Syrtis, neither sea
Nor good dry land, nigh foundered, as he fares,
Treading the crude consistence, half on foot,
Half flying."
The probability that nothing resembling a solid crust, nor, perhaps, even a liquid shell, would be found at the visible surface of Jupiter, is increased by considering that the surface density must be much less than the mean density of the planet taken as a whole, and since the latter but little exceeds the density of water, it is likely that at the surface everything is in a state resembling that of cloud or smoke. Our imaginary visitor upon reaching Jupiter would, under the influence of the planet's strong force of gravity, drop out of sight, with the speed of a shot, swallowed up in the vast atmosphere of probably hot, and perhaps partially incandescent, gases. When he had sunk—supposing his identity could be preserved—to a depth of thousands of miles he might not yet have found any solid part of the planet; and, perchance, there is no solid nucleus even at the very center.[Pg 165]
The cloudy aspect of Jupiter immediately strikes the telescopic observer. The huge planet is filled with color, and with the animation of constant movement, but there is no appearance of markings, like those on Mars, recalling the look of the earth. There are no white polar caps, and no shadings that suggest the outlines of continents and oceans. What every observer, even with the smallest telescope, perceives at once is a pair of strongly defined dark belts, one on either side of, and both parallel to, the planet's equator. These belts are dark compared with the equatorial band between them and with the general surface of the planet toward the north and the south, but they are not of a gray or neutral shade. On the contrary, they show decided, and, at times, brilliant colors, usually of a reddish tone. More delicate tints, sometimes a fine pink, salmon, or even light green, are occasionally to be seen about the equatorial zone, and the borders of the belts, while near the poles the surface is shadowed with bluish gray, imperceptibly deep[Pg 166]ening from the lighter hues of the equator.
All this variety of tone and color makes of a telescopic view of Jupiter a picture that will not quickly fade from the memory; while if an instrument of considerable power is used, so that the wonderful details of the belts, with their scalloped edges, their diagonal filaments, their many divisions, and their curious light and dark spots, are made plain, the observer is deeply impressed with the strangeness of the spectacle, and the more so as he reflects upon the enormous real magnitude of that which is spread before his eye. The whole earth flattened out would be but a small blotch on that gigantic disk!
Then, the visible rotation of the great Jovian globe, whose effects become evident to a practised eye after but a few minutes' watching, heightens the impression. And the presence of the four satellites, whose motions in their orbits are also evident, through the change in their positions, during the course of a single not prolonged[Pg 167] observation, adds its influence to the effectiveness of the scene. Indeed, color and motion are so conspicuous in the immense spectacle presented by Jupiter that they impart to it a powerful suggestion of life, which the mind does not readily divest itself of when compelled to face the evidence that Jupiter is as widely different from the earth, and as diametrically opposed to lifelike conditions, as we comprehend them, as a planet possibly could be.
The great belts lie in latitudes about corresponding to those in which the trade-winds blow upon the earth, and it has often been suggested that their existence indicates a similarity between the atmospheric circulation of Jupiter and that of the world in which we live. No doubt there are times when the earth, seen with a telescope from a distant planet, would present a belted appearance somewhat resembling that of Jupiter, but there would almost certainly be no similar display of colors in the clouds, and the latter would exhibit no such persistence in general form and position as[Pg 168] characterizes those of Jupiter. Our clouds are formed by the action of the sun, producing evaporation of water; on Jupiter, whose mean distance from the sun is more than five times as great as ours, the intensity of the solar rays is reduced to less than one twenty-fifth part of their intensity on the earth, so that the evaporation can not be equally active there, and the tendency to form aerial currents and great systems of winds must be proportionally slight. In brief, the clouds of Jupiter are probably of an entirely different origin from that of terrestrial clouds, and rather resemble the chaotic masses of vapor that enveloped the earth when it was still in a seminebulous condition, and before its crust had formed.
Although the strongest features of the disk of Jupiter are the great cloud belts, and the white or colored spots in the equatorial zone, yet the telescope shows many markings north and south of the belts, including a number of narrower and fainter belts, and small light or dark spots. None of them is absolutely fixed in position with[Pg 169] reference to others. In other words, all of the spots, belts, and markings shift their places to a perceptible extent, the changes being generally very slow and regular, but occasionally quite rapid. The main belts never entirely disappear, and never depart very far from their mean positions with respect to the equator, but the smaller belts toward the north and south are more or less evanescent. Round or oblong spots, as distinguished from belts, are still more variable and transient. The main belts themselves show great internal commotion, frequently splitting up, through a considerable part of their length, and sometimes apparently throwing out projections into the lighter equatorial zone, which occasionally resemble bridges, diagonally spanning the broad space between the belts.
JUPITER AS SEEN AT THE LICK OBSERVATORY IN 1889. THE GREAT RED SPOT IS VISIBLE, TOGETHER WITH THE INDENTATION IN THE SOUTH BELT.
Perhaps the most puzzling phenomenon that has ever made its appearance on Jupiter is the celebrated "great red spot," which was first noticed in 1878, although it has since been shown to be probably identical with a similar spot seen in 1869, and possi[Pg 170]bly with one noticed in 1857. This spot, soon after its discovery in 1878, became a clearly defined red oval, lying near the southern edge of the south belt in latitude about 30°. Its length was nearly one third of the diameter of the disk and its width almost one quarter as great as its length. Translated into terrestrial measure, it was about 30,000 miles long and 7,000 miles broad.
In 1879 it seemed to deepen in color until it became a truly wonderful object, its redness of hue irresistibly suggesting the idea that it was something hot and glowing. During the following years it underwent various changes of appearance, now fading almost to invisibility and now brightening again, but without ever completely vanishing, and it is still (1901) faintly visible.
Nobody has yet suggested an altogether probable and acceptable theory as to its nature. Some have said that it might be a part of the red-hot crust of the planet elevated above the level of the clouds;[Pg 171] others that its appearance might be due to the clearing off of the clouds above a heated region of the globe beneath, rendering the latter visible through the opening; others that it was perhaps a mass of smoke and vapor ejected from a gigantic volcano, or from the vents covering a broad area of volcanic action; others that it might be a vast incandescent slag floating upon the molten globe of the planet and visible through, or above, the enveloping clouds; and others have thought that it could be nothing but a cloud among clouds, differing, for unknown reasons, in composition and cohesion from its surroundings. All of these hypotheses except the last imply the existence, just beneath the visible cloud shell, of a more or less stable and continuous surface, either solid or liquid.
When the red spot began to lose distinctness a kind of veil seemed to be drawn over it, as if light clouds, floating at a superior elevation, had drifted across it. At times it has been reduced in this manner to a faint oval ring, the rim remaining visi[Pg 172]ble after the central part has faded from sight.
One of the most remarkable phenomena connected with the mysterious spot is a great bend, or scallop, in the southern edge of the south belt adjacent to the spot. This looks as if it were produced by the spot, or by the same cause to which the spot owes its existence. If the spot were an immense mountainous elevation, and the belt a current of liquid, or of clouds, flowing past its base, one would expect to see some such bend in the stream. The visual evidence that the belt is driven, or forced, away from the neighborhood of the spot seems complete. The appearance of repulsion between them is very striking, and even when the spot fades nearly to invisibility the curve remains equally distinct, so that in using a telescope too small to reveal the spot itself one may discover its location by observing the bow in the south belt. The suggestion of a resemblance to the flowing of a stream past the foot of an elevated promontory, or mountain, is strengthened by the[Pg 173] fact, which was observed early in the history of the spot, that markings involved in the south belt have a quicker rate of rotation about the planet's axis than that of the red spot, so that such markings, first seen in the rear of the red spot, gradually overtake and pass it, and eventually leave it behind, as boats in a river drift past a rock lying in the midst of the current.
This leads us to another significant fact concerning the peculiar condition of Jupiter's surface. Not only does the south belt move perceptibly faster than the red spot, but, generally speaking, the various markings on the surface of the planet move at different rates according as they are nearer to or farther from the equator. Between the equator and latitude 30° or 40° there is a difference of six minutes in the rotation period—i.e., the equatorial parts turn round the axis so much faster than the parts north and south of them, that in one rotation they gain six minutes of time. In other words, the clouds over Jupiter's equator flow past those in the middle latitudes with a relative[Pg 174] velocity of 270 miles per hour. But there are no sharp lines of separation between the different velocities; on the contrary, the swiftness of rotation gradually diminishes from the equator toward the poles, as it manifestly could not do if the visible surface of Jupiter were solid.
In this respect Jupiter resembles the sun, whose surface also has different rates of rotation diminishing from the equator. Measured by the motion of spots on or near the equator, Jupiter's rotation period is about nine hours fifty minutes; measured by the motion of spots in the middle latitudes, it is about nine hours fifty-six minutes. The red spot completes a rotation in a little less than nine hours and fifty-six minutes, but its period can not be positively given for the singular reason that it is variable. The variation amounts to only a few seconds in the course of several years, but it is nevertheless certain. The phenomenon of variable motion is not, however, peculiar to the red spot. Mr. W.F. Denning, who has studied Jupiter for a quarter of a century, says:[Pg 175]
"It is well known that in different latitudes of Jupiter there are currents, forming the belts and zones, moving at various rates of speed. In many instances the velocity changes from year to year. And it is a singular circumstance that in the same current a uniform motion is not maintained in all
Comments (0)