All Around the Moon by Jules Verne (universal ebook reader txt) 📖
- Author: Jules Verne
Book online «All Around the Moon by Jules Verne (universal ebook reader txt) 📖». Author Jules Verne
Balmy with breezes bland.
Return? Ah, who can tell?
Farewell, happy Swallows, farewell!
Barbican was much gratified to find that his rockets and other fireworks had not received the least injury. He relied upon them for the performance of a very important service as soon as the Projectile, having passed the point of neutral attraction between the Earth and the Moon, would begin to fall with accelerated velocity towards the Lunar surface. This descent, though—thanks to the respective volumes of the attracting bodies—six times less rapid than it would have been on the surface of the Earth, would still be violent enough to dash the Projectile into a thousand pieces. But Barbican confidently expected by means of his powerful rockets to offer very considerable obstruction to the violence of this fall, if not to counteract its terrible effects altogether.
The inspection having thus given general satisfaction, the travellers once more set themselves to watching external space through the lights in the sides and the floor of the Projectile.
Everything still appeared to be in the same state as before. Nothing was changed. The vast arch of the celestial dome glittered with stars, and constellations blazed with a light clear and pure enough to throw an astronomer into an ecstasy of admiration. Below them shone the Sun, like the mouth of a white-hot furnace, his dazzling disc defined sharply on the pitch-black back-ground of the sky. Above them the Moon, reflecting back his rays from her glowing surface, appeared to stand motionless in the midst of the starry host.
A little to the east of the Sun, they could see a pretty large dark spot, like a hole in the sky, the broad silver fringe on one edge fading off into a faint glimmering mist on the other—it was the Earth. Here and there in all directions, nebulous masses gleamed like large flakes of star dust, in which, from nadir to zenith, the eye could trace without a break that vast ring of impalpable star powder, the famous Milky Way, through the midst of which the beams of our glorious Sun struggle with the dusky pallor of a star of only the fourth magnitude.
Our observers were never weary of gazing on this magnificent and novel spectacle, of the grandeur of which, it is hardly necessary to say, no description can give an adequate idea. What profound reflections it suggested to their understandings! What vivid emotions it enkindled in their imaginations! Barbican, desirous of commenting the story of the journey while still influenced by these inspiring impressions, noted carefully hour by hour every fact that signalized the beginning of his enterprise. He wrote out his notes very carefully and systematically, his round full hand, as business-like as ever, never betraying the slightest emotion.
The Captain was quite as busy, but in a different way. Pulling out his tablets, he reviewed his calculations regarding the motion of projectiles, their velocities, ranges and paths, their retardations and their accelerations, jotting down the figures with a rapidity wonderful to behold. Ardan neither wrote nor calculated, but kept up an incessant fire of small talk, now with Barbican, who hardly ever answered him, now with M'Nicholl, who never heard him, occasionally with Diana, who never understood him, but oftenest with himself, because, as he said, he liked not only to talk to a sensible man but also to hear what a sensible man had to say. He never stood still for a moment, but kept "bobbing around" with the effervescent briskness of a bee, at one time roosting at the top of the ladder, at another peering through the floor light, now to the right, then to the left, always humming scraps from the Opera Bouffe, but never changing the air. In the small space which was then a whole world to the travellers, he represented to the life the animation and loquacity of the French, and I need hardly say he played his part to perfection.
The eventful day, or, to speak more correctly, the space of twelve hours which with us forms a day, ended for our travellers with an abundant supper, exquisitely cooked. It was highly enjoyed.
No incident had yet occurred of a nature calculated to shake their confidence. Apprehending none therefore, full of hope rather and already certain of success, they were soon lost in a peaceful slumber, whilst the Projectile, moving rapidly, though with a velocity uniformly retarding, still cleaved its way through the pathless regions of the empyrean.
CHAPTER IV. A CHAPTER FOR THE CORNELL GIRLS.No incident worth recording occurred during the night, if night indeed it could be called. In reality there was now no night or even day in the Projectile, or rather, strictly speaking, it was always night on the upper end of the bullet, and always day on the lower. Whenever, therefore, the words night and day occur in our story, the reader will readily understand them as referring to those spaces of time that are so called in our Earthly almanacs, and were so measured by the travellers' chronometers.
The repose of our friends must indeed have been undisturbed, if absolute freedom from sound or jar of any kind could secure tranquillity. In spite of its immense velocity, the Projectile still seemed to be perfectly motionless. Not the slightest sign of movement could be detected. Change of locality, though ever so rapid, can never reveal itself to our senses when it takes place in a vacuum, or when the enveloping atmosphere travels at the same rate as the moving body. Though we are incessantly whirled around the Sun at the rate of about seventy thousand miles an hour, which of us is conscious of the slightest motion? In such a case, as far as sensation is concerned, motion and repose are absolutely identical. Neither has any effect one way or another on a material body. Is such a body in motion? It remains in motion until some obstacle stops it. Is it at rest? It remains at rest until some superior force compels it to change its position. This indifference of bodies to motion or rest is what physicists call inertia.
Barbican and his companions, therefore, shut up in the Projectile, could readily imagine themselves to be completely motionless. Had they been outside, the effect would have been precisely the same. No rush of air, no jarring sensation would betray the slightest movement. But for the sight of the Moon gradually growing larger above them, and of the Earth gradually growing smaller beneath them, they could safely swear that they were fast anchored in an ocean of deathlike immobility.
Towards the morning of next day (December 3), they were awakened by a joyful, but quite unexpected sound.
"Cock-a-doodle! doo!" accompanied by a decided flapping of wings.
The Frenchman, on his feet in one instant and on the top of the ladder in another, attempted to shut the lid of a half open box, speaking in an angry but suppressed voice:
"Stop this hullabaloo, won't you? Do you want me to fail in my great combination!"
"Hello?" cried Barbican and M'Nicholl, starting up and rubbing their eyes.
"What noise was that?" asked Barbican.
"Seems to me I heard the crowing of a cock," observed the Captain.
"I never thought your ears could be so easily deceived, Captain," cried Ardan, quickly, "Let us try it again," and, flapping his ribs with his arms, he gave vent to a crow so loud and natural that the lustiest chanticleer that ever saluted the orb of day might be proud of it.
The Captain roared right out, and even Barbican snickered, but as they saw that their companion evidently wanted to conceal something, they immediately assumed straight faces and pretended to think no more about the matter.
"Barbican," said Ardan, coming down the ladder and evidently anxious to change the conversation, "have you any idea of what I was thinking about all night?"
"Not the slightest."
"I was thinking of the promptness of the reply you received last year from the authorities of Cambridge University, when you asked them about the feasibility of sending a bullet to the Moon. You know very well by this time what a perfect ignoramus I am in Mathematics. I own I have been often puzzled when thinking on what grounds they could form such a positive opinion, in a case where I am certain that the calculation must be an exceedingly delicate matter."
"The feasibility, you mean to say," replied Barbican, "not exactly of sending a bullet to the Moon, but of sending it to the neutral point between the Earth and the Moon, which lies at about nine-tenths of the journey, where the two attractions counteract each other. Because that point once passed, the Projectile would reach the Moon's surface by virtue of its own weight."
"Well, reaching that neutral point be it;" replied Ardan, "but, once more, I should like to know how they have been able to come at the necessary initial velocity of 12,000 yards a second?"
"Nothing simpler," answered Barbican.
"Could you have done it yourself?" asked the Frenchman.
"Without the slightest difficulty. The Captain and myself could have readily solved the problem, only the reply from the University saved us the trouble."
"Well, Barbican, dear boy," observed Ardan, "all I've got to say is, you might chop the head off my body, beginning with my feet, before you could make me go through such a calculation."
"Simply because you don't understand Algebra," replied Barbican, quietly.
"Oh! that's all very well!" cried Ardan, with an ironical smile. "You great x+y men think you settle everything by uttering the word Algebra!"
"Ardan," asked Barbican, "do you think people could beat iron without a hammer, or turn up furrows without a plough?"
"Hardly."
"Well, Algebra is an instrument or utensil just as much as a hammer or a plough, and a very good instrument too if you know how to make use of it."
"You're in earnest?"
"Quite so."
"And you can handle the instrument right before my eyes?"
"Certainly, if it interests you so much."
"You can show me how they got at the initial velocity of our Projectile?"
"With the greatest pleasure. By taking into proper consideration all the elements of the problem, viz.: (1) the distance between the centres of the Earth and the Moon, (2) the Earth's radius, (3) its volume, and (4) the Moon's volume, I can easily calculate what must be the initial velocity, and that too by a very simple formula."
"Let us have the formula."
"In one moment; only I can't give you the curve really described by the Projectile as it moves between the Earth and the Moon; this is to be obtained by allowing for their combined movement around the Sun. I will consider the Earth and the Sun to be motionless, that being sufficient for our present purpose."
"Why so?"
"Because to give you that exact curve would be to solve a point in the 'Problem of the Three Bodies,' which Integral Calculus has not yet reached."
"What!" cried Ardan, in a mocking tone, "is there really anything that Mathematics can't do?"
"Yes," said Barbican, "there is still a great deal that Mathematics can't even attempt."
"So far, so good;" resumed Ardan. "Now then what is this Integral Calculus of yours?"
"It is a branch of Mathematics that has for its object the summation of a certain infinite series of indefinitely small terms: but for the solution of which, we must generally know the function of which a given function is the differential coefficient. In other words," continued Barbican, "in it we return from the differential coefficient, to the function from which it was deduced."
"Clear as mud!" cried Ardan, with a hearty laugh.
"Now then, let me have a bit of paper and a pencil," added Barbican, "and in half an hour you shall have your formula; meantime you can easily find something interesting to do."
In a few seconds Barbican was profoundly absorbed in his problem, while M'Nicholl was watching out of the window, and Ardan was busily employed in preparing breakfast.
The morning meal was not quite ready, when Barbican, raising his head, showed Ardan a page covered with algebraic signs at the end of which stood the following formula:—
"Which means?" asked Ardan.
"It means," said the Captain, now taking part in the discussion, "that the half of v prime squared minus v squared equals gr multiplied by r over x minus one plus m prime over m multiplied by r over d minus x minus r over d minus r ... that is—"
"That is," interrupted Ardan, in a roar of laughter, "x stradlegs on y, making for
Comments (0)