The Problems of Philosophy Bertrand Russell (chrome ebook reader .TXT) 📖
- Author: Bertrand Russell
Book online «The Problems of Philosophy Bertrand Russell (chrome ebook reader .TXT) 📖». Author Bertrand Russell
In the preceding chapter we agreed, though without being able to find demonstrative reasons, that it is rational to believe that our sense-data—for example, those which we regard as associated with my table—are really signs of the existence of something independent of us and our perceptions. That is to say, over and above the sensations of colour, hardness, noise, and so on, which make up the appearance of the table to me, I assume that there is something else, of which these things are appearances. The colour ceases to exist if I shut my eyes, the sensation of hardness ceases to exist if I remove my arm from contact with the table, the sound ceases to exist if I cease to rap the table with my knuckles. But I do not believe that when all these things cease the table ceases. On the contrary, I believe that it is because the table exists continuously that all these sense-data will reappear when I open my eyes, replace my arm, and begin again to rap with my knuckles. The question we have to consider in this chapter is: What is the nature of this real table, which persists independently of my perception of it?
To this question physical science gives an answer, somewhat incomplete it is true, and in part still very hypothetical, but yet deserving of respect so far as it goes. Physical science, more or less unconsciously, has drifted into the view that all natural phenomena ought to be reduced to motions. Light and heat and sound are all due to wave-motions, which travel from the body emitting them to the person who sees light or feels heat or hears sound. That which has the wave-motion is either aether or “gross matter,” but in either case is what the philosopher would call matter. The only properties which science assigns to it are position in space, and the power of motion according to the laws of motion. Science does not deny that it may have other properties; but if so, such other properties are not useful to the man of science, and in no way assist him in explaining the phenomena.
It is sometimes said that “light is a form of wave-motion,” but this is misleading, for the light which we immediately see, which we know directly by means of our senses, is not a form of wave-motion, but something quite different—something which we all know if we are not blind, though we cannot describe it so as to convey our knowledge to a man who is blind. A wave-motion, on the contrary, could quite well be described to a blind man, since he can acquire a knowledge of space by the sense of touch; and he can experience a wave-motion by a sea voyage almost as well as we can. But this, which a blind man can understand, is not what we mean by light: we mean by light just that which a blind man can never understand, and which we can never describe to him.
Now this something, which all of us who are not blind know, is not, according to science, really to be found in the outer world: it is something caused by the action of certain waves upon the eyes and nerves and brain of the person who sees the light. When it is said that light is waves, what is really meant is that waves are the physical cause of our sensations of light. But light itself, the thing which seeing people experience and blind people do not, is not supposed by science to form any part of the world that is independent of us and our senses. And very similar remarks would apply to other kinds of sensations.
It is not only colours and sounds and so on that are absent from the scientific world of matter, but also space as we get it through sight or touch. It is essential to science that its matter should be in a space, but the space in which it is cannot be exactly the space we see or feel. To begin with, space as we see it is not the same as space as we get it by the sense of touch; it is only by experience in infancy that we learn how to touch things we see, or how to get a sight of things which we feel touching us. But the space of science is neutral as between touch and sight; thus it cannot be either the space of touch or the space of sight.
Again, different people see the same object as of different shapes, according to their point of view. A circular coin, for example, though we should always judge it to be circular, will look oval unless we are straight in front of it. When we judge that it is circular, we are judging that it has a real shape which is not its apparent shape, but belongs to it intrinsically apart from its appearance. But this real shape, which is what concerns science, must be in a real space, not the same as anybody’s apparent space. The real space is public, the apparent space is private to the percipient. In different people’s private spaces the same object seems to have different shapes; thus the real space, in which it has its real shape, must be different from the private spaces. The space of science, therefore, though connected with the spaces we see and feel, is not identical with them, and the manner of
Comments (0)