The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖
- Author: William Harmon Norton
- Performer: -
Book online «The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖». Author William Harmon Norton
Streams erode their beds chiefly by means of their bottom load,— the stones of various sizes and the sand and even the fine mud which they sweep along. With these tools they smooth, grind, and rasp the rock of their beds, using them in much the fashion of sandpaper or a file.
WEATHERING OF RIVER BEDS. The erosion of stream beds is greatly helped by the work of the weather. Especially at low water more or less of the bed is exposed to the action of frost and heat and cold, joints are opened, rocks are pried loose and broken up and made ready to be swept away by the stream at time of flood.
POTHOLES. In rapids streams also drill out their rocky beds. Where some slight depression gives rise to an eddy, the pebbles which gather in it are whirled round and round, and, acting like the bit of an auger, bore out a cylindrical pit called a pothole. Potholes sometimes reach a depth of a score of feet. Where they are numerous they aid materially in deepening the channel, as the walls between them are worn away and they coalesce.
WATERFALLS. One of the most effective means of erosion which the river possesses is the waterfall. The plunging water dislodges stones from the face of the ledge over which it pours, and often undermines it by excavating a deep pit at its base. Slice after slice is thus thrown down from the front of the cliff, and the cataract cuts its way upstream leaving a gorge behind it.
NIAGARA FALLS. The Niagara River flows from Lake Erie at Buffalo in a broad channel which it has cut but a few feet below the level of the region. Some thirteen miles from the outlet it plunges over a ledge one hundred and seventy feet high into the head of a narrow gorge which extends for seven miles to the escarpment of the upland in which the gorge is cut. The strata which compose the upland dip gently upstream and consist at top of a massive limestone, at the Falls about eighty feet thick, and below of soft and easily weathered shale. Beneath the Falls the underlying shale is cut and washed away by the descending water and retreats also because of weathering, while the overhanging limestone breaks down in huge blocks from time to time.
Niagara is divided by Goat Island into the Horseshoe Falls and the American Falls. The former is supplied by the main current of the river, and from the semicircular sweep of its rim a sheet of water in places at least fifteen or twenty feet deep plunges into a pool a little less than two hundred feet in depth. Here the force of the falling water is sufficient to move about the fallen blocks of limestone and use them in the excavation of the shale of the bed. At the American Falls the lesser branch of the river, which flows along the American side of Goat Island, pours over the side of the gorge and breaks upon a high talus of limestone blocks which its smaller volume of water is unable to grind to pieces and remove.
A series of surveys have determined that from 1842 to 1890 the Horseshoe Falls retreated at the rate of 2.18 feet per year, while the American Falls retreated at the rate of 0.64 feet in the same period. We cannot doubt that the same agency which is now lengthening the gorge at this rapid rate has cut it back its entire length of seven miles.
While Niagara Falls have been cutting back a gorge seven miles long and from two hundred to three hundred feet deep, the river above the Falls has eroded its bed scarcely below the level of the upland on which it flows. Like all streams which are the outlets of lakes, the Niagara flows out of Lake Erie clear of sediment, as from a settling basin, and carries no tools with which to abrade its bed. We may infer from this instance how slight is the erosive power of clear water on hard rock.
Assuming that the rate of recession of the combined volumes of the American and Horseshoe Falls was three feet a year below Goat Island, and ASSUMING THAT THIS RATE HAS BEEN UNIFORM IN THE PAST, how long is it since the Niagara River fell over the edge of the escarpment where now is the mouth of the present gorge?
The profile of the bed of the Niagara along the gorge (Fig. 39) shows alternating deeps and shallows which cannot be accounted for, except in a single instance, by the relative hardness of the rocks of the river bed. The deeps do not exceed that at the foot of the Horseshoe Falls at the present time. When the gorge was being cut along the shallows, how did the Falls compare in excavating power, in force, and volume with the Niagara of to-day? How did the rate of recession at those times compare with the present rate? Is the assumption made above that the rate of recession has been uniform correct?
The first stretch of shallows below the Falls causes a tumultuous rapid impossible to sound. Its depth has been estimated at thirty- five feet. From what data could such an estimate be made?
Suggest a reason why the Horseshoe Falls are convex upstream.
At the present rate of recession which will reach the head of Goat Island the sooner, the American or the Horseshoe Falls? What will be the fate of the Falls left behind when the other has passed beyond the head of the island?
The rate at which a stream erodes its bed depends in part upon the nature of the rocks over which it flows. Will a stream deepen its channel more rapidly on massive or on thin-bedded and close- jointed rocks? on horizontal strata or on strata steeply inclined?
DEPOSITIONWhile the river carries its invisible load of dissolved rock on without stop to the sea, its load of visible waste is subject to many delays en route. Now and again it is laid aside, to be picked up later and carried some distance farther on its way. One of the most striking features of the river therefore is the waste accumulated along its course, in bars and islands in the channel, beneath its bed, and in flood plains along its banks. All this alluvium, to use a general term for river deposits, with which the valley is cumbered is really en route to the sea; it is only temporarily laid aside to resume its journey later on. Constantly the river is destroying and rebuilding its alluvial deposits, here cutting and there depositing along its banks, here eroding and there building a bar, here excavating its bed and there filling it up, and at all times carrying the material picked up at one point some distance on downstream before depositing it at another.
These deposits are laid down by slackening currents where the velocity of the stream is checked, as on the inner side of curves, and where the slope of the bed is diminished, and in the lee of islands, bridge piers and projecting points of land. How slight is the check required to cause a current to drop a large part of its load may be inferred from the law of the relation of the transporting power to the velocity. If the velocity is decreased one half, the current can move fragments but one sixty-fourth the size of those which it could move before, and must drop all those of larger size.
Will a river deposit more at low water or at flood? when rising or when falling?
STRATIFICATION. River deposits are stratified, as may be seen in any fresh cut in banks or bars. The waste of which they are built has been sorted and deposited in layers, one above another; some of finer and some of coarser material. The sorting action of running water depends on the fact that its transporting power varies with the velocity. A current whose diminishing velocity compels it to drop coarse gravel, for example, is still able to move all the finer waste of its load, and separating it from the gravel, carries it on downstream; while at a later time slower currents may deposit on the gravel bed layers of sand, and, still later, slack water may leave on these a layer of mud. In case of materials lighter than water the transporting power does not depend on the velocity, and logs of wood, for instance, are floated on to the sea on the slowest as well as on the most rapid currents.
CROSS BEDDING. A section of a bar exposed at low water may show that it is formed of layers of sand, or coarser stuff, inclined downstream as steeply often as the angle of repose of the material. From a boat anchored over the lower end of a submerged sand bar we may observe the way in which this structure, called cross bedding, is produced. Sand is continually pushed over the edge of the bar at b (Fig. 42) and comes to rest in successive layers on the sloping surface. At the same time the bar may be worn away at the upper end, a, and thus slowly advance down stream. While the deposit is thus cross bedded, it constitutes as a whole a stratum whose upper and lower surfaces are about horizontal. In sections of river banks one may often see a vertical succession of cross-bedded strata, each built in the way described.
WATER WEAR. The coarser material of river deposits, such as cobblestones, gravel, and the larger grains of sand, are WATER WORN, or rounded, except when near their source. Rolling along the bottom they have been worn round by impact and friction as they rubbed against one another and the rocky bed of the stream.
Experiments have shown that angular fragments of granite lose nearly half their weight and become well rounded after traveling fifteen miles in rotating cylinders partly filled with water. Marbles are cheaply made in Germany out of small limestone cubes set revolving in a current of water between a rotating bed of stone and a block of oak, the process requiring but about fifteen minutes. It has been found that in the upper reaches of mountain streams a descent of less than a mile is sufficient to round pebbles of granite.
LAND FORMS DUE TO RIVER EROSIONRIVER VALLEYS. In their courses to the sea, rivers follow valleys of various forms, some shallow and some deep, some narrow and some wide. Since rivers are known to erode their beds and banks, it is a fair presumption that, aided by the weather, they have excavated the valleys in which they flow.
Moreover, a bird's-eye view or a map of a region shows the significant fact that the valleys of a system unite with one another in a branch work, as twigs meet their stems and the branches of a tree its trunk. Each valley, from that of the smallest rivulet to that of the master stream, is proportionate to the size of the stream which occupies it. With a few explainable exceptions the valleys of tributaries join that of the trunk stream at a level; there is no sudden descent or break in the bed at the point of juncture. These are the natural consequences which must follow if the land has long been worked upon by streams, and no other process has ever been suggested which is competent to produce them. We must conclude that valley systems have been formed by the river systems which drain them, aided by the work of the weather; they are not gaping fissures in the earth's crust, as early observers imagined, but are the furrows which running water has drawn upon the land.
As valleys are made by the slow wear of streams and the action of the weather, they pass in their development through successive stages, each of which has its own characteristic features. We may therefore classify rivers and valleys according to the stage which they have reached in their life history from infancy to old age.
YOUNG RIVER VALLEYSINFANCY. The Red River of the North. A region in northwestern Minnesota and the adjacent portions of North Dakota and Manitoba was so recently
Comments (0)