The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖
- Author: William Harmon Norton
- Performer: -
Book online «The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖». Author William Harmon Norton
The flat interstream areas are as yet but little scored by drainage lines, and in wet weather water lingers in ponds in any initial depressions on the plain.
CONTOURS. In order to read the topographic maps of the text-book and the laboratory the student should know that contours are lines drawn on maps to represent relief, all points on any given contour being of equal height above sea level. The CONTOUR INTERVAL is the uniform vertical distance between two adjacent contours and varies on different maps.
To express regions of faint relief a contour interval of ten or twenty feet is commonly selected; while in mountainous regions a contour interval of two hundred and fifty, five hundred, or even one thousand feet may be necessary in order that the contours may not be too crowded for easy reading.
Whether a river begins its life on a lake plain, as in the example just cited, or upon a coastal plain lifted from beneath the sea or on a spread of glacial drift left by the retreat of continental ice sheets, such as covers much of Canada and the northeastern parts of the United States, its infantile stage presents the same characteristic features,—a narrow and shallow valley, with undeveloped tributaries and undrained interstream areas. Ground water stands high, and, exuding in the undrained initial depressions, forms marshes and lakes.
LAKES. Lakes are perhaps the most obvious of these fleeting features of infancy. They are short-lived, for their destruction is soon accomplished by several means. As a river system advances toward maturity the deepening and extending valleys of the tributaries lower the ground-water surface and invade the undrained depressions of the region. Lakes having outlets are drained away as their basin rims are cut down by the outflowing streams,—a slow process where the rim is of hard rock, but a rapid one where it is of soft material such as glacial drift.
Lakes are effaced also by the filling of their basins. Inflowing streams and the wash of rains bring in waste. Waves abrade the shore and strew the debris worn from it over the lake bed. Shallow lakes are often filled with organic matter from decaying vegetation.
Does the outflowing stream, from a lake carry sediment? How does this fact affect its erosive power on hard rock? on loose material?
Lake Geneva is a well-known example of a lake in process of obliteration. The inflowing Rhone has already displaced the waters of the lake for a length of twenty miles with the waste brought down from the high Alps. For this distance there extends up the Rhone Valley an alluvial plain, which has grown lakeward at the rate of a mile and a half since Roman times, as proved by the distance inland at which a Roman port now stands.
How rapidly a lake may be silted up under exceptionally favorable conditions is illustrated by the fact that over the bottom of the artificial lake, of thirty-five square miles, formed behind the great dam across the Colorado River at Austin, Texas, sediments thirty-nine feet deep gathered in seven years.
Lake Mendota, one of the many beautiful lakes of southern Wisconsin, is rapidly cutting back the soft glacial drift of its shores by means of the abrasion of its waves. While the shallow basin is thus broadened, it is also being filled with the waste; and the time is brought nearer when it will be so shoaled that vegetation can complete the work of its effacement.
Along the margin of a shallow lake mosses, water lilies, grasses, and other water-loving plants grow luxuriantly. As their decaying remains accumulate on the bottom, the ring of marsh broadens inwards, the lake narrows gradually to a small pond set in the midst of a wide bog, and finally disappears. All stages in this process of extinction may be seen among the countless lakelets which occupy sags in the recent sheets of glacial drift in the northern states; and more numerous than the lakes which still remain are those already thus filled with carbonaceous matter derived from the carbon dioxide of the atmosphere. Such fossil lakes are marked by swamps or level meadows underlain with muck.
THE ADVANCE TO MATURITY. The infantile stage is brief. As a river advances toward maturity the initial depressions, the lake basins of its area, are gradually effaced. By the furrowing action of the rain wash and the head ward lengthening, of tributaries a branchwork of drainage channels grows until it covers the entire area, and not an acre is left on which the fallen raindrop does not find already cut for it an uninterrupted downward path which leads it on by way of gully, brook, and river to the sea. The initial surface of the land, by whatever agency it was modeled, is now wholly destroyed; the region is all reduced to valley slopes.
THE LONGITUDINAL PROFILE OF A STREAM. This at first corresponds with the initial surface of the region on which the stream begins to flow, although its way may lead through basins and down steep descents. The successive profiles to which it reduces its bed are illustrated in Figure 51. As the gradient, or rate of descent of its bed, is lowered, the velocity of the river is decreased until its lessening energy is wholly consumed in carrying its load and it can no longer erode its bed. The river is now AT GRADE, and its capacity is just equal to its load. If now its load is increased the stream deposits, and thus builds up, or AGGRADES, its bed. On the other hand, if its load is diminished it has energy to spare, and resuming its work of erosion, DEGRADES its bed. In either case the stream continues aggrading or degrading until a new gradient is found where the velocity is just sufficient to move the load, and here again it reaches grade.
V-VALLEYS. Vigorous rivers well armed with waste make short work of cutting their beds to grade, and thus erode narrow, steep-sided gorges only wide enough at the base to accommodate the stream. The steepness of the valley slopes depends on the relative rates at which the bed is cut down by the stream and the sides are worn back by the weather. In resistant rock a swift, well-laden stream may saw out a gorge whose sides are nearly or even quite vertical, but as a rule young valleys whose streams have not yet reached grade are V-shaped; their sides flare at the top because here the rocks have longest been opened up to the action of the weather. Some of the deepest canyons may be found where a rising land mass, either mountain range or plateau, has long maintained by its continued uplift the rivers of the region above grade.
In the northern hemisphere the north sides of river valleys are sometimes of more gentle slope than the south sides. Can you suggest a reason?
THE GRAND CANYON OF THE COLORADO RIVER IN ARIZONA. The Colorado River trenches the high plateau of northern Arizona with a colossal canyon two hundred and eighteen miles long and more than a mile in greatest depth. The rocks in which the canyon is cut are for the most part flat-lying, massive beds of limestones and sandstones, with some shales, beneath which in places harder crystalline rocks are disclosed. Where the canyon is deepest its walls have been profoundly dissected. Lateral ravines have widened into immense amphitheaters, leaving between them long ridges of mountain height, buttressed and rebuttressed with flanking spurs and carved into majestic architectural forms. From the extremity of one of these promontories it is two miles or more across the gulf to the point of the one opposite, and the heads of the amphitheaters are thirteen miles apart.
The lower portion of the canyon is much narrower (Fig. 54) and its walls of dark crystalline rock sink steeply to the edge of the river, a swift, powerful stream a few hundred feet wide, turbid with reddish silt, by means of which it continually rasps its rocky bed as it hurries on. The Colorado is still deepening its gorge. In the Grand Canyon its gradient is seven and one half feet to the mile, but, as in all ungraded rivers, the descent is far from uniform. Graded reaches in soft rock alternate with steeper declivities in hard rock, forming rapids such as, for example, a stretch of ten miles where the fall averages twenty-one feet to the mile. Because of these dangerous rapids the few exploring parties who have traversed the Colorado canyon have done so at the hazard of their lives.
The canyon has been shaped by several agencies. Its depth is due to the river which has sawed its way far toward the base of a lofty rising plateau. Acting alone this would have produced a slitlike gorge little wider than the breadth of the stream. The impressive width of the canyon and the magnificent architectural masses which fill it are owing to two causes.: Running water has gulched the walls and weathering has everywhere attacked and driven them back. The horizontal harder beds stand out in long lines of vertical cliffs, often hundreds of feet in height, at whose feet talus slopes conceal the outcrop of the weaker strata. As the upper cliffs have been sapped and driven back by the weather, broad platforms are left at their bases and the sides of the canyon descend to the river by gigantic steps. Far up and down the canyon the eye traces these horizontal layers, like the flutings of an elaborate molding, distinguishing each by its contour as well as by its color and thickness.
The Grand Canyon of the Colorado is often and rightly cited as an example of the stupendous erosion which may be accomplished by a river. And yet the Colorado is a young stream and its work is no more than well begun. It has not yet wholly reached grade, and the great task of the river and its tributaries—the task of leveling the lofty plateau to a low plain and of transporting it grain by grain to the sea—still lies almost entirely in the future.
WATERFALLS AND RAPIDS. Before the bed of a stream is reduced to grade it may be broken by abrupt descents which give rise to waterfalls and rapids. Such breaks in a river's bed may belong to the initial surface over which it began its course; still more commonly are they developed in the rock mass through which it is cutting its valley. Thus, wherever a stream leaves harder rocks to flow over softer ones the latter are quickly worn below the level of the former, and a sharp change in slope, with a waterfall or rapid, results.
At time of flood young tributaries with steeper courses than that of the trunk stream may bring down stones and finer waste, which the gentler current cannot move along, and throw them as a dam across its way. The rapids thus formed are also ephemeral, for as the gradient of the tributaries is lowered the main stream becomes able to handle the smaller and finer load which they discharge.
A rare class of falls is produced where the minor tributaries of a young river are not able to keep pace with their master stream in the erosion of their beds because of their smaller volume, and thus join it by plunging over the side of its gorge. But as the river approaches grade and slackens its down cutting, the tributaries sooner or later overtake it, and effacing their falls, unite with it on a level.
Waterfalls and rapids of all kinds are evanescent features of a river's youth. Like lakes they are soon destroyed, and if any long time had already elapsed since their formation they would have been obliterated already.
LOCAL BASELEVELS. That balanced condition called grade, where a river neither degrades its bed by erosion nor aggrades it by deposition, is first attained along reaches of soft rocks, ungraded outcrops of hard rocks remaining as barriers which give rise to rapids or falls. Until these barriers are worn away they constitute local baselevels, below which level the stream, up valley from them, cannot cut. They are eroded to grade one after another,
Comments (0)