Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖
Download in Format:
- Author: Charles Robert Darwin
Book online «Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖». Author Charles Robert Darwin
3 chapter 17) of some eggs, containing the bones of young turtles, found thus entombed.) One of the most compact varieties, when placed in acid, was entirely dissolved, with the exception of some flocculent animal matter; its specific gravity was 2.63. The specific gravity of ordinary limestone varies from 2.6 to 2.75; pure Carrara marble was found by Sir H. De la Beche to be 2.7. ("Researches in Theoretical Geology" page 12.) It is remarkable that these rocks of Ascension, formed close to the surface, should be nearly as compact as marble, which has undergone the action of heat and pressure in the plutonic regions.
The great accumulation of loose calcareous particles, lying on the beach near the Settlement, commences in the month of October, moving towards the S.W., which, as I was informed by Lieutenant Evans, is caused by a change in the prevailing direction of the currents. At this period the tidal rocks, at the S.W. end of the beach, where the calcareous sand is accumulating, and round which the currents sweep, become gradually coated with a calcareous incrustation, half an inch in thickness. It is quite white, compact, with some parts slightly spathose, and is firmly attached to the rock. After a short time it gradually disappears, being either redissolved, when the water is less charged with lime, or more probably is mechanically abraded. Lieutenant Evans has observed these facts, during the six years he has resided at Ascension. The incrustation varies in thickness in different years: in 1831 it was unusually thick. When I was there in July, there was no remnant of the incrustation; but on a point of basalt, from which the quarrymen had lately removed a mass of the calcareous freestone, the incrustation was perfectly preserved. Considering the position of the tidal-rocks, and the period at which they become coated, there can be no doubt that the movement and disturbance of the vast accumulation of calcareous particles, many of them being partially agglutinated together, cause the waves of the sea to be so highly charged with carbonate of lime, that they deposit it on the first objects against which they impinge. I have been informed by Lieutenant Holland, R.N., that this incrustation is formed on many parts of the coast, on most of which, I believe, there are likewise great masses of comminuted shells.
A FRONDESCENT CALCAREOUS INCRUSTATION.
In many respects this is a singular deposit; it coats throughout the year the tidal volcanic rocks, that project from the beaches composed of broken shells. Its general appearance is well represented in Figure 5; but the fronds or discs, of which it is composed, are generally so closely crowded together as to touch. These fronds have their sinuous edges finely crenulated, and they project over their pedestals or supports; their upper surfaces are either slightly concave, or slightly convex; they are highly polished, and of a dark grey or jet black colour; their form is irregular, generally circular, and from the tenth of an inch to one inch and a half in diameter; their thickness, or amount of their projection from the rock on which they stand, varies much, about a quarter of an inch being perhaps most usual. The fronds occasionally become more and more convex, until they pass into botryoidal masses with their summits fissured; when in this state, they are glossy and of an intense black, so as to resemble some fused metallic substance. I have shown the incrustation, both in this latter and in its ordinary state to several geologists, but not one could conjecture its origin, except that perhaps it was of volcanic nature!
The substance forming the fronds has a very compact and often almost crystalline fracture; the edges being translucent, and hard enough easily to scratch calcareous spar. Under the blowpipe it immediately becomes white, and emits a strong animal odour, like that from fresh shells. It is chiefly composed of carbonate of lime; when placed in muriatic acid it froths much, leaving a residue of sulphate of lime, and of an oxide of iron, together with a black powder, which is not soluble in heated acids. This latter substance seems to be carbonaceous, and is evidently the colouring matter. The sulphate of lime is extraneous, and occurs in distinct, excessively minute, lamellar plates, studded on the surface of the fronds, and embedded between the fine layers of which they are composed; when a fragment is heated in the blowpipe, these lamellae are immediately rendered visible. The original outline of the fronds may often be traced, either to a minute particle of shell fixed in a crevice of the rock, or to several cemented together; these first become deeply corroded, by the dissolving power of the waves, into sharp ridges, and then are coated with successive layers of the glossy, grey, calcareous incrustation. The inequalities of the primary support affect the outline of every successive layer, in the same manner as may often be seen in bezoar-stones, when an object like a nail forms the centre of aggregation. The crenulated edges, however, of the frond appear to be due to the corroding power of the surf on its own deposit, alternating with fresh depositions. On some smooth basaltic rocks on the coast of St. Jago, I found an exceedingly thin layer of brown calcareous matter, which under a lens presented a miniature likeness of the crenulated and polished fronds of Ascension; in this case a basis was not afforded by any projecting extraneous particles. Although the incrustation at Ascension is persistent throughout the year; yet from the abraded appearance of some parts, and from the fresh appearance of other parts, the whole seems to undergo a round of decay and renovation, due probably to changes in the form of the shifting beach, and consequently in the action of the breakers: hence probably it is, that the incrustation never acquires a great thickness. Considering the position of the encrusted rocks in the midst of the calcareous beach, together with its composition, I think there can be no doubt that its origin is due to the dissolution and subsequent deposition of the matter composing the rounded particles of shells and corals. (The selenite, as I have remarked is extraneous, and must have been derived from the sea-water. It is an interesting circumstance thus to find the waves of the ocean, sufficiently charged with sulphate of lime, to deposit it on the rocks, against which they dash every tide. Dr. Webster has described ("Voyage of the 'Chanticleer'" volume 2 page 319) beds of gypsum and salt, as much as two feet in thickness, left by the evaporation of the spray on the rocks on the windward coast. Beautiful stalactites of selenite, resembling in form those of carbonate of lime, are formed near these beds. Amorphous masses of gypsum, also, occur in caverns in the interior of the island; and at Cross Hill (an old crater) I saw a considerable quantity of salt oozing from a pile of scoriae. In these latter cases, the salt and gypsum appear to be volcanic products.) From this source it derives its animal matter, which is evidently the colouring principle. The nature of the deposit, in its incipient stage, can often be well seen upon a fragment of white shell, when jammed between two of the fronds; it then appears exactly like the thinnest wash of a pale grey varnish. Its darkness varies a little, but the jet blackness of some of the fronds and of the botryoidal masses seems due to the translucency of the successive grey layers. There is, however, this singular circumstance, that when deposited on the under side of ledges of rock or in fissures, it appears always to be of a pale, pearly grey colour, even when of considerable thickness: hence one is led to suppose, that an abundance of light is necessary to the development of the dark colour, in the same manner as seems to be the case with the upper and exposed surfaces of the shells of living mollusca, which are always dark, compared with their under surfaces and with the parts habitually covered by the mantle of the animal. In this circumstance,--in the immediate loss of colour and in the odour emitted under the blowpipe,--in the degree of hardness and translucency of the edges,--and in the beautiful polish of the surface (From the fact described in my "Journal of Researches" of a coating of oxide of iron, deposited by a streamlet on the rocks in its bed (like a nearly similar coating at the great cataracts of the Orinoco and Nile), becoming finely polished where the surf acts, I presume that the surf in this instance, also, is the polishing agent.), rivalling when in a fresh state that of the finest Oliva, there is a striking analogy between this inorganic incrustation and the shells of living molluscous animals. (In the section descriptive of St. Paul's Rocks, I have described a glossy, pearly substance, which coats the rocks, and an allied stalactitical incrustation from Ascension, the crust of which resembles the enamel of teeth, but is hard enough to scratch plate-glass. Both these substances contain animal matter, and seem to have been derived from water in filtering through birds' dung.) This appears to me to be an interesting physiological fact. (Mr. Horner and Sir David Brewster have described "Philosophical Transactions" 1836 page 65 a singular "artificial substance, resembling shell." It is deposited in fine, transparent, highly polished, brown- coloured laminae, possessing peculiar optical properties, on the inside of a vessel, in which cloth, first prepared with glue and then with lime, is made to revolve rapidly in water. It is much softer, more transparent, and contains more animal matter, than the natural incrustation at Ascension; but we here again see the strong tendency which carbonate of lime and animal matter evince to form a solid substance allied to shell.)
SINGULAR LAMINATED BEDS ALTERNATING WITH AND PASSING INTO OBSIDIAN.
These beds occur within the trachytic district, at the western base of Green Mountain, under which they dip at a high inclination. They are only partially exposed, being covered up by modern ejections; from this cause, I was unable to trace their junction with the trachyte, or to discover whether they had flowed as a stream of lava, or had been injected amidst the overlying strata. There are three principal beds of obsidian, of which the thickest forms the base of the section. The alternating stony layers appear to me eminently curious, and shall be first described, and afterwards their passage into the obsidian. They have an extremely diversified appearance; five principal varieties may be noticed, but these insensibly blend into each other by endless gradations.
FIRST.
A pale grey, irregularly and coarsely laminated (This term is open to some misinterpretation, as it may be applied both to rocks divided into laminae of exactly the same composition, and to layers firmly attached to each other, with no fissile tendency, but composed of different minerals, or of different shades of colour. The term "laminated," in this chapter, is applied in these latter senses; where a homogeneous rock splits, as in the former sense, in a given direction, like clay-slate, I have used the term "fissile."), harsh-feeling rock, resembling clay-slate which has been in contact with a trap-dike, and with a fracture of about the same degree of crystalline structure. This rock, as well as the following varieties, easily fuses into a pale glass. The greater part is honeycombed with irregular, angular, cavities, so that the whole has a curious appearance, and some fragments resemble in a remarkable manner silicified logs of decayed wood. This variety, especially where more compact, is often marked with thin whitish streaks, which are either straight or wrap round, one behind the other, the elongated carious hollows.
SECONDLY.
A bluish grey or pale brown, compact, heavy, homogeneous stone, with an angular, uneven, earthy fracture; viewed, however, under a lens of high power,
The great accumulation of loose calcareous particles, lying on the beach near the Settlement, commences in the month of October, moving towards the S.W., which, as I was informed by Lieutenant Evans, is caused by a change in the prevailing direction of the currents. At this period the tidal rocks, at the S.W. end of the beach, where the calcareous sand is accumulating, and round which the currents sweep, become gradually coated with a calcareous incrustation, half an inch in thickness. It is quite white, compact, with some parts slightly spathose, and is firmly attached to the rock. After a short time it gradually disappears, being either redissolved, when the water is less charged with lime, or more probably is mechanically abraded. Lieutenant Evans has observed these facts, during the six years he has resided at Ascension. The incrustation varies in thickness in different years: in 1831 it was unusually thick. When I was there in July, there was no remnant of the incrustation; but on a point of basalt, from which the quarrymen had lately removed a mass of the calcareous freestone, the incrustation was perfectly preserved. Considering the position of the tidal-rocks, and the period at which they become coated, there can be no doubt that the movement and disturbance of the vast accumulation of calcareous particles, many of them being partially agglutinated together, cause the waves of the sea to be so highly charged with carbonate of lime, that they deposit it on the first objects against which they impinge. I have been informed by Lieutenant Holland, R.N., that this incrustation is formed on many parts of the coast, on most of which, I believe, there are likewise great masses of comminuted shells.
A FRONDESCENT CALCAREOUS INCRUSTATION.
In many respects this is a singular deposit; it coats throughout the year the tidal volcanic rocks, that project from the beaches composed of broken shells. Its general appearance is well represented in Figure 5; but the fronds or discs, of which it is composed, are generally so closely crowded together as to touch. These fronds have their sinuous edges finely crenulated, and they project over their pedestals or supports; their upper surfaces are either slightly concave, or slightly convex; they are highly polished, and of a dark grey or jet black colour; their form is irregular, generally circular, and from the tenth of an inch to one inch and a half in diameter; their thickness, or amount of their projection from the rock on which they stand, varies much, about a quarter of an inch being perhaps most usual. The fronds occasionally become more and more convex, until they pass into botryoidal masses with their summits fissured; when in this state, they are glossy and of an intense black, so as to resemble some fused metallic substance. I have shown the incrustation, both in this latter and in its ordinary state to several geologists, but not one could conjecture its origin, except that perhaps it was of volcanic nature!
The substance forming the fronds has a very compact and often almost crystalline fracture; the edges being translucent, and hard enough easily to scratch calcareous spar. Under the blowpipe it immediately becomes white, and emits a strong animal odour, like that from fresh shells. It is chiefly composed of carbonate of lime; when placed in muriatic acid it froths much, leaving a residue of sulphate of lime, and of an oxide of iron, together with a black powder, which is not soluble in heated acids. This latter substance seems to be carbonaceous, and is evidently the colouring matter. The sulphate of lime is extraneous, and occurs in distinct, excessively minute, lamellar plates, studded on the surface of the fronds, and embedded between the fine layers of which they are composed; when a fragment is heated in the blowpipe, these lamellae are immediately rendered visible. The original outline of the fronds may often be traced, either to a minute particle of shell fixed in a crevice of the rock, or to several cemented together; these first become deeply corroded, by the dissolving power of the waves, into sharp ridges, and then are coated with successive layers of the glossy, grey, calcareous incrustation. The inequalities of the primary support affect the outline of every successive layer, in the same manner as may often be seen in bezoar-stones, when an object like a nail forms the centre of aggregation. The crenulated edges, however, of the frond appear to be due to the corroding power of the surf on its own deposit, alternating with fresh depositions. On some smooth basaltic rocks on the coast of St. Jago, I found an exceedingly thin layer of brown calcareous matter, which under a lens presented a miniature likeness of the crenulated and polished fronds of Ascension; in this case a basis was not afforded by any projecting extraneous particles. Although the incrustation at Ascension is persistent throughout the year; yet from the abraded appearance of some parts, and from the fresh appearance of other parts, the whole seems to undergo a round of decay and renovation, due probably to changes in the form of the shifting beach, and consequently in the action of the breakers: hence probably it is, that the incrustation never acquires a great thickness. Considering the position of the encrusted rocks in the midst of the calcareous beach, together with its composition, I think there can be no doubt that its origin is due to the dissolution and subsequent deposition of the matter composing the rounded particles of shells and corals. (The selenite, as I have remarked is extraneous, and must have been derived from the sea-water. It is an interesting circumstance thus to find the waves of the ocean, sufficiently charged with sulphate of lime, to deposit it on the rocks, against which they dash every tide. Dr. Webster has described ("Voyage of the 'Chanticleer'" volume 2 page 319) beds of gypsum and salt, as much as two feet in thickness, left by the evaporation of the spray on the rocks on the windward coast. Beautiful stalactites of selenite, resembling in form those of carbonate of lime, are formed near these beds. Amorphous masses of gypsum, also, occur in caverns in the interior of the island; and at Cross Hill (an old crater) I saw a considerable quantity of salt oozing from a pile of scoriae. In these latter cases, the salt and gypsum appear to be volcanic products.) From this source it derives its animal matter, which is evidently the colouring principle. The nature of the deposit, in its incipient stage, can often be well seen upon a fragment of white shell, when jammed between two of the fronds; it then appears exactly like the thinnest wash of a pale grey varnish. Its darkness varies a little, but the jet blackness of some of the fronds and of the botryoidal masses seems due to the translucency of the successive grey layers. There is, however, this singular circumstance, that when deposited on the under side of ledges of rock or in fissures, it appears always to be of a pale, pearly grey colour, even when of considerable thickness: hence one is led to suppose, that an abundance of light is necessary to the development of the dark colour, in the same manner as seems to be the case with the upper and exposed surfaces of the shells of living mollusca, which are always dark, compared with their under surfaces and with the parts habitually covered by the mantle of the animal. In this circumstance,--in the immediate loss of colour and in the odour emitted under the blowpipe,--in the degree of hardness and translucency of the edges,--and in the beautiful polish of the surface (From the fact described in my "Journal of Researches" of a coating of oxide of iron, deposited by a streamlet on the rocks in its bed (like a nearly similar coating at the great cataracts of the Orinoco and Nile), becoming finely polished where the surf acts, I presume that the surf in this instance, also, is the polishing agent.), rivalling when in a fresh state that of the finest Oliva, there is a striking analogy between this inorganic incrustation and the shells of living molluscous animals. (In the section descriptive of St. Paul's Rocks, I have described a glossy, pearly substance, which coats the rocks, and an allied stalactitical incrustation from Ascension, the crust of which resembles the enamel of teeth, but is hard enough to scratch plate-glass. Both these substances contain animal matter, and seem to have been derived from water in filtering through birds' dung.) This appears to me to be an interesting physiological fact. (Mr. Horner and Sir David Brewster have described "Philosophical Transactions" 1836 page 65 a singular "artificial substance, resembling shell." It is deposited in fine, transparent, highly polished, brown- coloured laminae, possessing peculiar optical properties, on the inside of a vessel, in which cloth, first prepared with glue and then with lime, is made to revolve rapidly in water. It is much softer, more transparent, and contains more animal matter, than the natural incrustation at Ascension; but we here again see the strong tendency which carbonate of lime and animal matter evince to form a solid substance allied to shell.)
SINGULAR LAMINATED BEDS ALTERNATING WITH AND PASSING INTO OBSIDIAN.
These beds occur within the trachytic district, at the western base of Green Mountain, under which they dip at a high inclination. They are only partially exposed, being covered up by modern ejections; from this cause, I was unable to trace their junction with the trachyte, or to discover whether they had flowed as a stream of lava, or had been injected amidst the overlying strata. There are three principal beds of obsidian, of which the thickest forms the base of the section. The alternating stony layers appear to me eminently curious, and shall be first described, and afterwards their passage into the obsidian. They have an extremely diversified appearance; five principal varieties may be noticed, but these insensibly blend into each other by endless gradations.
FIRST.
A pale grey, irregularly and coarsely laminated (This term is open to some misinterpretation, as it may be applied both to rocks divided into laminae of exactly the same composition, and to layers firmly attached to each other, with no fissile tendency, but composed of different minerals, or of different shades of colour. The term "laminated," in this chapter, is applied in these latter senses; where a homogeneous rock splits, as in the former sense, in a given direction, like clay-slate, I have used the term "fissile."), harsh-feeling rock, resembling clay-slate which has been in contact with a trap-dike, and with a fracture of about the same degree of crystalline structure. This rock, as well as the following varieties, easily fuses into a pale glass. The greater part is honeycombed with irregular, angular, cavities, so that the whole has a curious appearance, and some fragments resemble in a remarkable manner silicified logs of decayed wood. This variety, especially where more compact, is often marked with thin whitish streaks, which are either straight or wrap round, one behind the other, the elongated carious hollows.
SECONDLY.
A bluish grey or pale brown, compact, heavy, homogeneous stone, with an angular, uneven, earthy fracture; viewed, however, under a lens of high power,
Free ebook «Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖» - read online now
Similar e-books:
Comments (0)