Science
Read books online » Science » Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖

Book online «Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖». Author Charles Robert Darwin



1 ... 8 9 10 11 12 13 14 15 16 ... 28
Go to page:
the fracture is seen to be distinctly crystalline, and even separate minerals can be distinguished.
THIRDLY.
A stone of the same kind with the last, but streaked with numerous, parallel, slightly tortuous, white lines of the thickness of hairs. These white lines are more crystalline than the parts between them; and the stone splits along them: they frequently expand into exceedingly thin cavities, which are often only just perceptible with a lens. The matter forming the white lines becomes better crystallised in these cavities, and Professor Miller was fortunate enough, after several trials, to ascertain that the white crystals, which are the largest, were of quartz (Professor Miller informs me that the crystals which he measured had the faces P, z, m of the figure (147) given by Haidinger in his Translation of Mohs; and he adds, that it is remarkable, that none of them had the slightest trace of faces r of the regular six-sided prism.), and that the minute green transparent needles were augite, or, as they would more generally be called, diopside: besides these crystals, there are some minute, dark specks without a trace of crystalline, and some fine, white, granular, crystalline matter which is probably feldspar. Minute fragments of this rock are easily fusible.
FOURTHLY.
A compact crystalline rock, banded in straight lines with innumerable layers of white and grey shades of colour, varying in width from the thirtieth to the two-hundredth of an inch; these layers seem to be composed chiefly of feldspar, and they contain numerous perfect crystals of glassy feldspar, which are placed lengthways; they are also thickly studded with microscopically minute, amorphous, black specks, which are placed in rows, either standing separately, or more frequently united, two or three or several together, into black lines, thinner than a hair. When a small fragment is heated in the blowpipe, the black specks are easily fused into black brilliant beads, which become magnetic,--characters that apply to no common mineral except hornblende or augite. With the black specks there are mingled some others of a red colour, which are magnetic before being heated, and no doubt are oxide of iron. Round two little cavities, in a specimen of this variety, I found the black specks aggregated into minute crystals, appearing like those of augite or hornblende, but too dull and small to be measured by the goniometer; in the specimen, also, I could distinguish amidst the crystalline feldspar, grains, which had the aspect of quartz. By trying with a parallel ruler, I found that the thin grey layers and the black hair-like lines were absolutely straight and parallel to each other. It is impossible to trace the gradation from the homogeneous grey rocks to these striped varieties, or indeed the character of the different layers in the same specimen, without feeling convinced that the more or less perfect whiteness of the crystalline feldspathic matter depends on the more or less perfect aggregation of diffused matter, into the black and red specks of hornblende and oxide of iron.
FIFTHLY.
A compact heavy rock, not laminated, with an irregular, angular, highly crystalline, fracture; it abounds with distinct crystals of glassy feldspar, and the crystalline feldspathic base is mottled with a black mineral, which on the weathered surface is seen to be aggregated into small crystals, some perfect, but the greater number imperfect. I showed this specimen to an experienced geologist, and asked him what it was; he answered, as I think every one else would have done, that it was a primitive greenstone. The weathered surface, also, of the banded variety in Figure 4, strikingly resembles a worn fragment of finely laminated gneiss.
These five varieties, with many intermediate ones, pass and repass into each other. As the compact varieties are quite subordinate to the others, the whole may be considered as laminated or striped. The laminae, to sum up their characteristics, are either quite straight, or slightly tortuous, or convoluted; they are all parallel to each other, and to the intercalating strata of obsidian; they are generally of extreme thinness; they consist either of an apparently homogeneous, compact rock, striped with different shades of grey and brown colours, or of crystalline feldspathic layers in a more or less perfect state of purity, and of different thicknesses, with distinct crystals of glassy feldspar placed lengthways, or of very thin layers chiefly composed of minute crystals of quartz and augite, or composed of black and red specks of an augitic mineral and of an oxide of iron, either not crystallised or imperfectly so. After having fully described the obsidian, I shall return to the subject of the lamination of rocks of the trachytic series.
The passage of the foregoing beds into the strata of glassy obsidian is effected in several ways: first, angulo-modular masses of obsidian, both large and small, abruptly appear disseminated in a slaty, or in an amorphous, pale-coloured, feldspathic rock, with a somewhat pearly fracture. Secondly, small irregular nodules of the obsidian, either standing separately, or united into thin layers, seldom more than the tenth of an inch in thickness, alternate repeatedly with very thin layers of a feldspathic rock, which is striped with the finest parallel zones of colour, like an agate, and which sometimes passes into the nature of pitchstone; the interstices between the nodules of obsidian are generally filled by soft white matter, resembling pumiceous ashes. Thirdly, the whole substance of the bounding rock suddenly passes into an angulo-concretionary mass of obsidian. Such masses (as well as the small nodules) of obsidian are of a pale green colour, and are generally streaked with different shades of colour, parallel to the laminae of the surrounding rock; they likewise generally contain minute white sphaerulites, of which half is sometimes embedded in a zone of one shade of colour, and half in a zone of another shade. The obsidian assumes its jet black colour and perfectly conchoidal fracture, only when in large masses; but even in these, on careful examination and on holding the specimens in different lights, I could generally distinguish parallel streaks of different shades of darkness.
One of the commonest transitional rocks deserves in several respects a further description. It is of a very complicated nature, and consists of numerous thin, slightly tortuous layers of a pale-coloured feldspathic stone, often passing into an imperfect pitchstone, alternating with layers formed of numberless little globules of two varieties of obsidian, and of two kinds of sphaerulites, embedded in a soft or in a hard pearly base. The sphaerulites are either white and translucent, or dark brown and opaque; the former are quite spherical, of small size, and distinctly radiated from their centre. The dark brown sphaerulites are less perfectly round, and vary in diameter from the twentieth to the thirtieth of an inch; when broken they exhibit towards their centres, which are whitish, an obscure radiating structure; two of them when united sometimes have only one central point of radiation; there is occasionally a trace of or a hollow crevice in their centres. They stand either separately, or are united two or three or many together into irregular groups, or more commonly into layers, parallel to the stratification of the mass. This union in many cases is so perfect, that the two sides of the layer thus formed, are quite even; and these layers, as they become less brown and opaque, cannot be distinguished from the alternating layers of the pale-coloured feldspathic stone. The sphaerulites, when not united, are generally compressed in the plane of the lamination of the mass; and in this same plane, they are often marked internally, by zones of different shades of colour, and externally by small ridges and furrows. In the upper part of Figure 6, the sphaerulites with the parallel ridges and furrows are represented on an enlarged scale, but they are not well executed; and in the lower part, their usual manner of grouping is shown. In another specimen, a thin layer formed of the brown sphaerulites closely united together, intersects, as represented in Figure 7, a layer of similar composition; and after running for a short space in a slightly curved line, again intersects it, and likewise a second layer lying a little way beneath that first intersected. The small nodules also of obsidian are sometimes externally marked with ridges and furrows, parallel to the lamination of the mass, but always less plainly than the sphaerulites. These obsidian nodules are generally angular, with their edges blunted: they are often impressed with the form of the adjoining sphaerulites, than which they are always larger; the separate nodules seldom appear to have drawn each other out by exerting a mutually attractive force. Had I not found in some cases, a distinct centre of attraction in these nodules of obsidian, I should have been led to have considered them as residuary matter, left during the formation of the pearlstone, in which they are embedded, and of the sphaerulitic globules.
The sphaerulites and the little nodules of obsidian in these rocks so closely resemble, in general form and structure, concretions in sedimentary deposits, that one is at once tempted to attribute to them an analogous origin. They resemble ordinary concretions in the following respects: in their external form,--in the union of two or three, or of several, into an irregular mass, or into an even-sided layer,--in the occasional intersection of one such layer by another, as in the case of chalk-flints,- -in the presence of two or three kinds of nodules, often close together, in the same basis,--in their fibrous, radiating structure, with occasional hollows in their centres,--in the co-existence of a laminary, concretionary, and radiating structure, as is so well developed in the concretions of magnesian limestone, described by Professor Sedgwick. ("Geological Transactions" volume 3 part 1 page 37.) Concretions in sedimentary deposits, it is known, are due to the separation from the surrounding mass of the whole or part of some mineral substance, and its aggregation round certain points of attraction. Guided by this fact, I have endeavoured to discover whether obsidian and the sphaerulites (to which may be added marekanite and pearlstone, both of them occurring in nodular concretions in the trachytic series) differ in their constituent parts, from the minerals generally composing trachytic rocks. It appears from three analyses, that obsidian contains on an average 76 per cent of silica; from one analysis, that sphaerulites contain 79.12; from two, that marekanite contains 79.25; and from two other analyses, that pearlstone contains 75.62 of silica. (The foregoing analyses are taken from Beudant "Traite de Mineralogie" tome 2 page 113; and one analysis of obsidian from Phillips "Mineralogy.") Now, the constituent parts of trachyte, as far as they can be distinguished consist of feldspar, containing 65.21 of silica; or of albite, containing 69.09; of hornblende, containing 55.27 (These analyses are taken from Von Kobell "Grundzuge der Mineralogie" 1838.), and of oxide of iron: so that the foregoing glassy concretionary substances all contain a larger proportion of silica than that occurring in ordinary feldspathic or trachytic rocks. D'Aubuisson ("Traite de Geogn." tome 2 page 535.), also, has remarked on the large proportion of silica compared with alumina, in six analyses of obsidian and pearlstone given in Brongniart's "Mineralogy." Hence I conclude, that the foregoing concretions have been formed by a process of aggregation, strictly analogous to that which takes place in aqueous deposits, acting chiefly on the silica, but likewise on some of the other elements of the surrounding mass, and thus producing the different concretionary varieties. From the well-known effects of rapid cooling (This is seen in the manufacture of common glass, and in Gregory Watts's experiments on molten trap; also on the natural surfaces of lava- streams, and on the side-walls of dikes.) in giving glassiness of texture, it is probably necessary that the entire mass, in cases like that of Ascension, should have cooled at a certain rate; but considering the repeated and complicated alterations of nodules and thin layers of a glassy texture with
1 ... 8 9 10 11 12 13 14 15 16 ... 28
Go to page:

Free ebook «Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment