Science
Read books online » Science » Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖

Book online «Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖». Author Charles Robert Darwin



1 ... 19 20 21 22 23 24 25 26 27 28
Go to page:
had been enveloped in this state from some previously existing mass, such crystals or granules would rise or sink, according to their specific gravity. Now we have plain evidence of crystals being embedded in many lavas, whilst the paste or basis has continued fluid. I need only refer, as instances, to the several, great, pseudo-porphyritic streams at the Galapagos Islands, and to the trachytic streams in many parts of the world, in which we find crystals of feldspar bent and broken by the movement of the surrounding, semi-fluid matter. Lavas are chiefly composed of three varieties of feldspar, varying in specific gravity from 2.4 to 2.74; of hornblende and augite, varying from 3.0 to 3.4; of olivine, varying from 3.3 to 3.4; and lastly, of oxides of iron, with specific gravities from 4.8 to 5.2. Hence crystals of feldspar, enveloped in a mass of liquified, but not highly vesicular lava, would tend to rise to the upper parts; and crystals or granules of the other minerals, thus enveloped, would tend to sink. We ought not, however, to expect any perfect degree of separation in such viscid materials. Trachyte, which consists chiefly of feldspar, with some hornblende and oxide of iron, has a specific gravity of about 2.45; whilst basalt, composed chiefly of augite and feldspar, often with much iron and olivine, has a gravity of about 3.0. (Trachyte from Java was found by Von Buch to be 2.47; from Auvergne, by De la Beche, it was 2.42; from Ascension, by myself, it was 2.42. Jameson and other authors give to basalt a specific gravity of 3.0; but specimens from Auvergne were found, by De la Beche, to be only 2.78; and from the Giant's Causeway, to be 2.91.) Accordingly we find, that where both trachytic and basaltic streams have proceeded from the same orifice, the trachytic streams have generally been first erupted owing, as we must suppose, to the molten lava of this series having accumulated in the upper parts of the volcanic focus. This order of eruption has been observed by Beudant, Scrope, and by other authors; three instances, also, have been given in this volume. As the later eruptions, however, from most volcanic mountains, burst through their basal parts, owing to the increased height and weight of the internal column of molten rock, we see why, in most cases, only the lower flanks of the central, trachytic masses, are enveloped by basaltic streams. The separation of the ingredients of a mass of lava, would, perhaps, sometimes take place within the body of a volcanic mountain, if lofty and of great dimensions, instead of within the underground focus; in which case, trachytic streams might be poured forth, almost contemporaneously, or at short recurrent intervals, from its summit, and basaltic streams from its base: this seems to have taken place at Teneriffe. (Consult Von Buch's well-known and admirable "Description Physique" of this island, which might serve as a model of descriptive geology.) I need only further remark, that from violent disturbances the separation of the two series, even under otherwise favourable conditions, would naturally often be prevented, and likewise their usual order of eruption be inverted. From the high degree of fluidity of most basaltic lavas, these perhaps, alone, would in many cases reach the surface.
As we have seen that crystals of feldspar, in the instance described by Von Buch, sink in obsidian, in accordance with their known greater specific gravity, we might expect to find in every trachytic district, where obsidian has flowed as lava, that it had proceeded from the upper or highest orifices. This, according to Von Buch, holds good in a remarkable manner both at the Lipari Islands and on the Peak of Teneriffe; at this latter place obsidian has never flowed from a less height than 9,200 feet. Obsidian, also, appears to have been erupted from the loftiest peaks of the Peruvian Cordillera. I will only further observe, that the specific gravity of quartz varies from 2.6 to 2.8; and therefore, that when present in a volcanic focus, it would not tend to sink with the basaltic bases; and this, perhaps, explains the frequent presence, and the abundance of this mineral, in the lavas of the trachytic series, as observed in previous parts of this volume.
An objection to the foregoing theory will, perhaps, be drawn from the plutonic rocks not being separated into two evidently distinct series, of different specific gravities; although, like the volcanic, they have been liquified. In answer, it may first be remarked, that we have no evidence of the atoms of any one of the constituent minerals in the plutonic series having been aggregated, whilst the others remained fluid, which we have endeavoured to show is an almost necessary condition of their separation; on the contrary, the crystals have generally impressed each other with their forms. (The crystalline paste of phonolite is frequently penetrated by long needles of hornblende; from which it appears that the hornblende, though the more fusible mineral, has crystallised before, or at the same time with a more refractory substance. Phonolite, as far as my observations serve, in every instance appears to be an injected rock, like those of the plutonic series; hence probably, like these latter, it has generally been cooled without repeated and violent disturbances. Those geologists who have doubted whether granite could have been formed by igneous liquefaction, because minerals of different degrees of fusibility impress each other with their forms, could not have been aware of the fact of crystallised hornblende penetrating phonolite, a rock undoubtedly of igneous origin. The viscidity, which it is now known, that both feldspar and quartz retain at a temperature much below their points of fusion, easily explains their mutual impressment. Consult on this subject Mr. Horner's paper on Bonn "Geolog. Transact." volume 4 page 439; and "L'Institut" with respect to quartz 1839 page 161.)
In the second place, the perfect tranquillity, under which it is probable that the plutonic masses, buried at profound depths, have cooled, would, most likely, be highly unfavourable to the separation of their constituent minerals; for, if the attractive force, which during the progressive cooling draws together the molecules of the different minerals, has power sufficient to keep them together, the friction between such half-formed crystals or pasty globules would effectually prevent the heavier ones from sinking, or the lighter ones from rising. On the other hand, a small amount of disturbance, which would probably occur in most volcanic foci, and which we have seen does not prevent the separation of granules of lead from a mixture of molten lead and silver, or crystals of feldspar from streams of lava, by breaking and dissolving the less perfectly formed globules, would permit the more perfect and therefore unbroken crystals, to sink or rise, according to their specific gravity.
Although in plutonic rocks two distinct species, corresponding to the trachytic and basaltic series, do not exist, I much suspect that a certain amount of separation of their constituent parts has often taken place. I suspect this from having observed how frequently dikes of greenstone and basalt intersect widely extended formations of granite and the allied metamorphic rocks. I have never examined a district in an extensive granitic region without discovering dikes; I may instance the numerous trap-dikes, in several districts of Brazil, Chile, and Australia, and at the Cape of Good Hope: many dikes likewise occur in the great granitic tracts of India, in the north of Europe, and in other countries. Whence, then, has the greenstone and basalt, forming these dikes, come? Are we to suppose, like some of the elder geologists, that a zone of trap is uniformly spread out beneath the granitic series, which composes, as far as we know, the foundations of the earth's crust? Is it not more probable, that these dikes have been formed by fissures penetrating into partially cooled rocks of the granitic and metamorphic series, and by their more fluid parts, consisting chiefly of hornblende, oozing out, and being sucked into such fissures? At Bahia, in Brazil, in a district composed of gneiss and primitive greenstone, I saw many dikes, of a dark augitic (for one crystal certainly was of this mineral) or hornblendic rock, which, as several appearances clearly proved, either had been formed before the surrounding mass had become solid, or had together with it been afterwards thoroughly softened. (Portions of these dikes have been broken off, and are now surrounded by the primary rocks, with their laminae conformably winding round them. Dr. Hubbard also ("Silliman's Journal" volume 34 page 119), has described an interlacement of trap-veins in the granite of the White Mountains, which he thinks must have been formed when both rocks were soft.) On both sides of one of these dikes, the gneiss was penetrated, to the distance of several yards, by numerous, curvilinear threads or streaks of dark matter, which resembled in form clouds of the class called cirrhi- comae; some few of these threads could be traced to their junction with the dike. When examining them, I doubted whether such hair-like and curvilinear veins could have been injected, and I now suspect, that instead of having been injected from the dike, they were its feeders. If the foregoing views of the origin of trap-dikes in widely extended granitic regions far from rocks of any other formation, be admitted as probable, we may further admit, in the case of a great body of plutonic rock, being impelled by repeated movements into the axis of a mountain-chain, that its more liquid constituent parts might drain into deep and unseen abysses; afterwards, perhaps, to be brought to the surface under the form, either of injected masses of greenstone and augitic porphyry, or of basaltic eruptions. (Mr. Phillips "Lardner's Encyclop." volume 2 page 115 quotes Von Buch's statement, that augitic porphyry ranges parallel to, and is found constantly at the base of, great chains of mountains. Humboldt, also, has remarked the frequent occurrence of trap-rock, in a similar position; of which fact I have observed many examples at the foot of the Chilian Cordillera. The existence of granite in the axes of great mountain chains is always probable, and I am tempted to suppose, that the laterally injected masses of augitic porphyry and of trap, bear nearly the same relation to the granitic axes which basaltic lavas bear to the central trachytic masses, round the flanks of which they have so frequently been erupted.) Much of the difficulty which geologists have experienced when they have compared the composition of volcanic with plutonic formations, will, I think, be removed, if we may believe that most plutonic masses have been, to a certain extent, drained of those comparatively weighty and easily liquified elements, which compose the trappean and basaltic series of rocks.


ON THE DISTRIBUTION OF VOLCANIC ISLANDS.
During my investigations on coral-reefs, I had occasion to consult the works of many voyagers, and I was invariably struck with the fact, that with rare exceptions, the innumerable islands scattered throughout the Pacific, Indian, and Atlantic Oceans, were composed either of volcanic, or of modern coral-rocks. It would be tedious to give a long catalogue of all the volcanic islands; but the exceptions which I have found are easily enumerated: in the Atlantic, we have St. Paul's Rock, described in this volume, and the Falkland Islands, composed of quartz and clay-slate; but these latter islands are of considerable size, and lie not very far from the South American coast (Judging from Forster's imperfect observation, perhaps Georgia is not volcanic. Dr. Allan is my informant with regard to the Seychelles. I do not know of what formation Rodriguez, in the Indian Ocean, is composed.): in the Indian Ocean, the Seychelles (situated in a line prolonged from Madagascar) consist of granite and quartz: in the Pacific Ocean, New Caledonia, an island of large size, belongs (as far as is known) to the primary class. New Zealand, which contains much volcanic rock and some active volcanoes,
1 ... 19 20 21 22 23 24 25 26 27 28
Go to page:

Free ebook «Volcanic Islands by Charles Robert Darwin (reading books for 6 year olds TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment