Science
Read books online » Science » A History of Science, vol 1 by Henry Smith Williams (reader novel txt) 📖

Book online «A History of Science, vol 1 by Henry Smith Williams (reader novel txt) 📖». Author Henry Smith Williams



1 ... 33 34 35 36 37 38 39 40 41 ... 44
Go to page:
to us a celestial phenomena, acquaints us with the occupants of the land and ocean, and the vegetation, fruits, and peculiarities of the various quarters of the earth, a knowledge of which marks him who cultivates it as a man earnest in the great problem of life and happiness.”

Strabo goes on to say that in common with other critics, including Hipparchus, he regards Homer as the first great geographer. He has much to say on the geographical knowledge of the bard, but this need not detain us. We are chiefly concerned with his comment upon his more recent predecessors, beginning with Eratosthenes. The constant reference to this worker shows the important position which he held. Strabo appears neither as detractor nor as partisan, but as one who earnestly desires the truth. Sometimes he seems captious in his criticisms regarding some detail, nor is he always correct in his emendations of the labors of others; but, on the whole, his work is marked by an evident attempt at fairness. In reading his book, however, one is forced to the conclusion that Strabo is an investigator of details, not an original thinker. He seems more concerned with precise measurements than with questionings as to the open problems of his science. Whatever he accepts, then, may be taken as virtually the stock doctrine of the period.

“As the size of the earth,” he says, “has been demonstrated by other writers, we shall here take for granted and receive as accurate what they have advanced. We shall also assume that the earth is spheroidal, that its surface is likewise spheroidal and, above all, that bodies have a tendency towards its centre, which latter point is clear to the perception of the most average understanding. However, we may show summarily that the earth is spheroidal, from the consideration that all things, however distant, tend to its centre, and that every body is attracted towards its centre by gravity. This is more distinctly proved from observations of the sea and sky, for here the evidence of the senses and common observation is alone requisite. The convexity of the sea is a further proof of this to those who have sailed, for they cannot perceive lights at a distance when placed at the same level as their eyes, and if raised on high they at once become perceptible to vision though at the same time farther removed. So when the eye is raised it sees what before was utterly imperceptible. Homer speaks of this when he says: ” ‘Lifted up on the vast wave he quickly beheld afar.’

Sailors as they approach their destination behold the shore continually raising itself to their view, and objects which had at first seemed low begin to lift themselves. Our gnomons, also, are, among other things, evidence of the revolution of the heavenly bodies, and common-sense at once shows us that if the depth of the earth were infinite such a revolution could not take place.”[1]

Elsewhere Strabo criticises Eratosthenes for having entered into a long discussion as to the form of the earth. This matter, Strabo thinks, “should have been disposed of in the compass of a few words.” Obviously this doctrine of the globe’s sphericity had, in the course of 600 years, become so firmly established among the Greek thinkers as to seem almost axiomatic. We shall see later on how the Western world made a curious recession from this seemingly secure position under stimulus of an Oriental misconception. As to the size of the globe, Strabo is disposed to accept without particular comment the measurements of Eratosthenes. He speaks, however, of “more recent measurements,”

referring in particular to that adopted by Posidonius, according to which the circumference is only about one hundred and eighty thousand stadia. Posidonius, we may note in passing, was a contemporary and friend of Cicero, and hence lived shortly before the time of Strabo. His measurement of the earth was based on observations of a star which barely rose above the southern horizon at Rhodes as compared with the height of the same star when observed at Alexandria. This measurement of Posidonius, together with the even more famous measurement of Eratosthenes, appears to have been practically the sole guide as to the size of the earth throughout the later periods of antiquity, and, indeed, until the later Middle Ages.

As becomes a writer who is primarily geographer and historian rather than astronomer, Strabo shows a much keener interest in the habitable portions of the globe than in the globe as a whole.

He assures us that this habitable portion of the earth is a great island, “since wherever men have approached the termination of the land, the sea, which we designate ocean, has been met with, and reason assures us of the similarity of this place which our senses have not been tempted to survey.” He points out that whereas sailors have not circumnavigated the globe, that they had not been prevented from doing so by any continent, and it seems to him altogether unlikely that the Atlantic Ocean is divided into two seas by narrow isthmuses so placed as to prevent circumnavigation. “How much more probable that it is confluent and uninterrupted. This theory,” he adds, “goes better with the ebb and flow of the ocean. Moreover (and here his reasoning becomes more fanciful), the greater the amount of moisture surrounding the earth, the easier would the heavenly bodies be supplied with vapor from thence.” Yet he is disposed to believe, following Plato, that the tradition “concerning the island of Atlantos might be received as something more than idle fiction, it having been related by Solon, on the authority of the Egyptian priests, that this island, almost as large as a continent, was formerly in existence although now it had disappeared.”[2]

In a word, then, Strabo entertains no doubt whatever that it would be possible to sail around the globe from Spain to India.

Indeed, so matter-of-fact an inference was this that the feat of Columbus would have seemed less surprising in the first century of our era than it did when actually performed in the fifteenth century. The terrors of the great ocean held the mariner back, rather than any doubt as to where he would arrive at the end of the voyage.

Coupled with the idea that the habitable portion of the earth is an island, there was linked a tolerably definite notion as to the shape of this island. This shape Strabo likens to a military cloak. The comparison does not seem peculiarly apt when we are told presently that the length of the habitable earth is more than twice its breadth. This idea, Strabo assures us, accords with the most accurate observations “both ancient and modern.”

These observations seemed to show that it is not possible to live in the region close to the equator, and that, on the other hand, the cold temperature sharply limits the habitability of the globe towards the north. All the civilization of antiquity clustered about the Mediterranean, or extended off towards the east at about the same latitude. Hence geographers came to think of the habitable globe as having the somewhat lenticular shape which a crude map of these regions suggests. We have already had occasion to see that at an earlier day Anaxagoras was perhaps influenced in his conception of the shape of the earth by this idea, and the constant references of Strabo impress upon us the thought that this long, relatively narrow area of the earth’s surface is the only one which can be conceived of as habitable.

Strabo had much to tell us concerning zones, which, following Posidonius, he believes to have been first described by Parmenides. We may note, however, that other traditions assert that both Thales and Pythagoras had divided the earth into zones.

The number of zones accepted by Strabo is five, and he criticises Polybius for making the number six. The five zones accepted by Strabo are as follows: the uninhabitable torrid zone lying in the region of the equator; a zone on either side of this extending to the tropic; and then the temperate zones extending in either direction from the tropic to the arctic regions. There seems to have been a good deal of dispute among the scholars of the time as to the exact arrangement of these zones, but the general idea that the north-temperate zone is the part of the earth with which the geographer deals seemed clearly established. That the south-temperate zone would also present a habitable area is an idea that is sometimes suggested, though seldom or never distinctly expressed. It is probable that different opinions were held as to this, and no direct evidence being available, a cautiously scientific geographer like Strabo would naturally avoid the expression of an opinion regarding it.

Indeed, his own words leave us somewhat in doubt as to the precise character of his notion regarding the zones. Perhaps we shall do best to quote them:

“Let the earth be supposed to consist of five zones. (1) The equatorial circle described around it. (2) Another parallel to this, and defining the frigid zone of the northern hemisphere.

(3) A circle passing through the poles and cutting the two preceding circles at right-angles. The northern hemisphere contains two quarters of the earth, which are bounded by the equator and circle passing through the poles. Each of these quarters should be supposed to contain a four-sided district, its northern side being of one-half of the parallel next the pole, its southern by the half of the equator, and its remaining sides by two segments of the circle drawn through the poles, opposite to each other, and equal in length. In one of these (which of them is of no consequence) the earth which we inhabit is situated, surrounded by a sea and similar to an island. This, as we said before, is evident both to our senses and to our reason.

But let any one doubt this, it makes no difference so far as geography is concerned whether you believe the portion of the earth which we inhabit to be an island or only admit what we know from experience —namely, that whether you start from the east or the west you may sail all around it. Certain intermediate spaces may have been left (unexplored), but these are as likely to be occupied by sea as uninhabited land. The object of the geographer is to describe known countries. Those which are unknown he passes over equally with those beyond the limits of the inhabited earth.

It will, therefore, be sufficient for describing the contour of the island we have been speaking of, if we join by a right line the outmost points which, up to this time, have been explored by voyagers along the coast on either side.”[3]

We may pass over the specific criticisms of Strabo upon various explorations that seem to have been of great interest to his contemporaries, including an alleged trip of one Eudoxus out into the Atlantic, and the journeyings of Pytheas in the far north. It is Pytheas, we may add, who was cited by Hipparchus as having made the mistaken observation that the length of the shadow of the gnomon is the same at Marseilles and Byzantium, hence that these two places are on the same parallel. Modern commentators have defended Pytheas as regards this observation, claiming that it was Hipparchus and not Pytheas who made the second observation from which the faulty induction was drawn. The point is of no great significance, however, except as showing that a correct method of determining the problems of latitude had thus early been suggested. That faulty observations and faulty application of the correct principle should have been made is not surprising.

Neither need we concern ourselves with the details as to the geographical distances, which Strabo found so worthy of criticism and controversy. But in leaving the great geographer we

1 ... 33 34 35 36 37 38 39 40 41 ... 44
Go to page:

Free ebook «A History of Science, vol 1 by Henry Smith Williams (reader novel txt) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment