Science
Read books online » Science » The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖

Book online «The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖». Author William Harmon Norton



1 ... 40 41 42 43 44 45 46 47 48 ... 53
Go to page:
orders. Their fore wings were still membranous and delicately veined, and used in flying; they had not yet become thick, and useful only as wing covers, as in many of their descendants.

FISHES still held to the Devonian types, with the exception that the strange ostracoderms now had perished.

AMPHIBIANS. The vertebrates had now followed the arthropods and the mollusks upon the land, and had evolved a higher type adapted to the new environment. Amphibians—the class to which frogs and salamanders belong—now appear, with lungs for breathing air and with limbs for locomotion on the land. Most of the Carboniferous amphibians were shaped like the salamander, with weak limbs adapted more for crawling than for carrying the body well above the ground. Some legless, degenerate forms were snakelike in shape.

The earliest amphibians differ from those of to-day in a number of respects. They were connecting types linking together fishes, from which they were descended, with reptiles, of which they were the ancestors. They retained the evidence of their close relationship with the Devonian fishes in their cold blood, their gills and aquatic habit during their larval stage, their teeth with dentine infolded like those of the Devonian ganoids but still more intricately, and their biconcave vertebrae which never completely ossified. These, the highest vertebrates of the time, had not yet advanced beyond the embryonic stage of the more or less cartilaginous skeleton and the persistent notochord.

On the other hand, the skull of the Carboniferous amphibians was made of close-set bony plates, like the skull of the reptile, rather than like that of the frog, with its open spaces (Figs. 313 and 314). Unlike modern amphibians, with their slimy skin, the Carboniferous amphibians wore an armor of bony scales over the ventral surface and sometimes over the back as well.

It is interesting to notice from the footprints and skeletons of these earliest-known vertebrates of the land what was the primitive number of digits. The Carboniferous amphibians had five- toed feet, the primitive type of foot, from which their descendants of higher orders, with a smaller number of digits, have diverged.

The Carboniferous was the age of lycopods and amphibians, as the
Devonian had been the age of rhizocarps and fishes.

LIFE OF THE PERMIAN. The close of the Paleozoic was, as we have seen, a time of marked physical changes. The upridging of the Appalachians had begun and a wide continental uplift—proved by the absence of Permian deposits over large areas where sedimentation had gone on before—opened new lands for settlement to hordes of air-breathing animals. Changes of climate compelled extensive migrations, and the fauna of different regions were thus brought into conflict. The Permian was a time of pronounced changes in plant and animal life, and a transitional period between two great eras. The somber forests of the earlier Carboniferous, with their gigantic club mosses, were now replaced by forests of cycads, tree ferns, and conifers. Even in the lower Permian the Lepidodendron and Sigillaria were very rare, and before the end of the epoch they and the Calamites also had become extinct. Gradually the antique types of the Paleozoic fauna died out, and in the Permian rocks are found the last survivors of the cystoid, the trilobite, and the eurypterid, and of many long-lived families of brachiopods, mollusks, and other invertebrates. The venerable Orthoceras and the Goniatite linger on through the epoch and into the first period of the succeeding era. Forerunners of the great ammonite family of cephalopod mollusks now appear. The antique forms of the earlier Carboniferous amphibians continue, but with many new genera and a marked increase in size.

A long forward step had now been taken in the evolution of the vertebrates. A new and higher type, the reptiles, had appeared, and in such numbers and variety are they found in the Permian strata that their advent may well have occurred in a still earlier epoch. It will be most convenient to describe the Permian reptiles along with their descendants of the Mesozoic.

CHAPTER XX THE MESOZOIC

With the close of the Permian the world of animal and vegetable life had so changed that the line is drawn here which marks the end of the old order and the beginning of the new and separates the Paleozoic from the succeeding era,—the Mesozoic, the Middle Age of geological history. Although the Mesozoic era is shorter than the Paleozoic, as measured by the thickness of their strata, yet its duration must be reckoned in millions of years. Its predominant life features are the culmination and the beginning of the decline of reptiles, amphibians, cephalopod mollusks, and cycads, and the advent of marsupial mammals, birds, teleost fishes, and angiospermous plants. The leading events of the long ages of the era we can sketch only in the most summary way.

The Mesozoic comprises three systems,—the TRIASSIC, named from its threefold division in Germany; the JURASSIC, which is well displayed in the Jura Mountains; and the CRETACEOUS, which contains the extensive chalk (Latin, creta) deposits of Europe.

In eastern North America the Mesozoic rocks are much less important than the Paleozoic, for much of this portion of the continent was land during the Mesozoic era, and the area of the Mesozoic rocks is small. In western North America, on the other hand, the strata of the Mesozoic—and of the Cenozoic also—are widely spread. The Paleozoic rocks are buried quite generally from view except where the mountain makings and continental uplifts of the Mesozoic and Cenozoic have allowed profound erosion to bring them to light, as in deep canyons and about mountain axes. The record of many of the most important events in the development of the continent during the Mesozoic and Cenozoic eras is found in the rocks of our western states.

THE TRIASSIC AND JURASSIC

EASTERN NORTH AMERICA. The sedimentary record interrupted by the Appalachian deformation was not renewed in eastern North America until late in the Triassic. Hence during this long interval the land stood high, the coast was farther out than now, and over our Atlantic states geological time was recorded chiefly in erosion forms of hill and plain which have long since vanished. The area of the later Triassic rocks of this region, which take up again the geological record, is seen in the map of Figure 260. They lie on the upturned and eroded edges of the older rocks and occupy long troughs running for the most part parallel to the Atlantic coast. Evidently subsidence was in progress where these rocks were deposited. The eastern border of Appalachia was now depressed. The oldland was warping, and long belts of country lying parallel to the shore subsided, forming troughs in which thousands of feet of sediment now gathered.

These Triassic rocks, which are chiefly sandstones, hold no marine fossils, and hence were not laid in open arms of the sea. But their layers are often ripple-marked, and contain many tracks of reptiles, imprints of raindrops, and some fossil wood, while an occasional bed of shale is filled with the remains of fishes. We may conceive, then, of the Connecticut valley and the larger trough to the southwest as basins gradually sinking at a rate perhaps no faster than that of the New Jersey coast to-day, and as gradually aggraded by streams from the neighboring uplands. Their broad, sandy flats were overflowed by wandering streams, and when subsidence gained on deposition shallow lakes overspread the alluvial plains. Perhaps now and then the basins became long, brackish estuaries, whose low shores were swept by the incoming tide and were in turn left bare at its retreat to receive the rain prints of passing showers and the tracks of the troops of reptiles which inhabited these valleys.

The Triassic rocks are mainly red sandstones,—often feldspathic, or arkose, with some conglomerates and shales. Considering the large amount of feldspathic material in these rocks, do you infer that they were derived from the adjacent crystalline and metamorphic rocks of the oldland of Appalachia, or from the sedimentary Paleozoic rocks which had been folded into mountains during the Appalachian deformation? If from the former, was the drainage of the northern Appalachian mountain region then, as now, eastward and southeastward toward the Atlantic? The Triassic sandstones are voluminous, measuring at least a mile in thickness, and are largely of coarse waste. What do you infer as to the height of the lands from which the waste was shed, or the direction of the oscillation which they were then undergoing? In the southern basins, as about Richmond, Virginia, are valuable beds of coal; what was the physical geography of these areas when the coal was being formed?

Interbedded with the Triassic sandstones are contemporaneous lava beds which were fed from dikes. Volcanic action, which had been remarkably absent in eastern North America during Paleozoic times, was well-marked in connection with the warping now in progress. Thick intrusive sheets have also been driven in among the strata, as, for example, the sheet of the Palisades of the Hudson, described on page 269.

The present condition of the Triassic sandstones of the Connecticut valley is seen in Figure 315. Were the beds laid in their present attitude? What was the nature of the deformation which they have suffered? When did the intrusion of lava sheets take place relative to the deformation? What effect have these sheets on the present topography, and why? Assuming that the Triassic deformation went on more rapidly than denudation, what was its effect on the topography of the time? Are there any of its results remaining in the topography of to-day? Do the Triassic areas now stand higher or lower than the surrounding country, and why? How do the Triassic sandstones and shales compare in hardness with the igneous and metamorphic rocks about them? The Jurassic strata are wanting over the Triassic areas and over all of eastern North America. Was this region land or sea, an area of erosion or sedimentation, during the Jurassic period? In New Jersey, Pennsylvania, and farther southwest the lowest strata of the next period, the Cretaceous, rest on the eroded edges of the earlier rocks. The surface on which they lie is worn so even that we must believe that at the opening of the Cretaceous the oldland of Appalachia, including the Triassic areas, had been baseleveled at least near the coast. When, therefore, did the deformation of the Triassic rocks occur?

WESTERN NORTH AMERICA. Triassic strata infolded in the Sierra Nevada Mountains carry marine fossils and reach a thickness of nearly five thousand feet. California was then under water, and the site of the Sierra was a subsiding trough slowly filling with waste from the Great Basin land to the east.

Over a long belt which reaches from Wyoming across Colorado into New Mexico no Triassic sediments are found, nor is there any evidence that they were ever present; hence this area was high land suffering erosion during the Triassic. On each side of it, in eastern Colorado and about the Black Hills, in western Texas, in Utah, over the site of the Wasatch Mountains, and southward into Arizona over the plateaus trenched by the Colorado River, are large areas of Triassic rocks, sandstones chiefly, with some rock salt and gypsum. Fossils are very rare and none of them marine. Here, then, lay broad shallow lakes often salt, and warped basins, in which the waste of the adjacent uplands gathered. To this system belong the sandstones of the Garden of the Gods in Colorado, which later earth movements have upturned with the uplifted mountain flanks.

The Jurassic was marked with varied oscillations and wide changes in the outline of sea and land.

Jurassic shales of immense thickness—now metamorphosed into slates—are found infolded into the Sierra Nevada Mountains. Hence during Jurassic times the Sierra trough continued to subside, and enormous deposits of mud were washed into it from the land lying to the east. Contemporaneous lava flows interbedded with the strata show that volcanic action accompanied the downwarp, and that molten rock was driven upward through fissures in the crust and outspread over the sea floor in sheets of lava.

THE SIERRA DEFORMATION. Ever since the middle of the Silurian, the Sierra trough had been sinking, though no doubt with halts and interruptions, until it contained nearly twenty-five thousand feet of sediment. At the close of the Jurassic it yielded to lateral pressure and the vast pile of strata was crumpled and upheaved into towering mountains. The Mesozoic muds were hardened and squeezed into slates. The rocks were wrenched and broken, and underground waters began the work of filling their fissures with gold-bearing quartz, which was yet to wait millions of years before the arrival of man to mine it. Immense bodies of molten rock were intruded into the crust as it suffered deformation, and these appear in the large areas of granite which the later denudation of the range has brought to light.

The same movements probably uplifted the rocks of the Coast Range in a chain of islands. The whole western part of the continent was raised and its seas and lakes

1 ... 40 41 42 43 44 45 46 47 48 ... 53
Go to page:

Free ebook «The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment