The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖
- Author: William Harmon Norton
- Performer: -
Book online «The Elements of Geology by William Harmon Norton (the beginning after the end novel read TXT) 📖». Author William Harmon Norton
The great eurypterids—some of which were five or six feet in length—and the cephalopods were still masters of the seas. Fishes were as yet few and small; trilobites and graptolites had now passed their prime and had diminished greatly in numbers. Scorpions are found in this period both in Europe and in America. The limestone-making seas of the Silurian swarmed with corals, crinoids, and brachiopods.
With the end of the Silurian period the AGE OF INVERTEBRATES comes to a close, giving place to the Devonian, the AGE OF FISHES.
CHAPTER XVIII THE DEVONIANIn America the Silurian is not separated from the Devonian by any mountain-making deformation or continental uplift. The one period passed quietly into the other. Their conformable systems are so closely related, and the change in their faunas is so gradual, that geologists are not agreed as to the precise horizon which divides them.
SUBDIVISIONS AND PHYSICAL GEOGRAPHY. The Devonian is represented in New York and southward by the following five series. We add the rocks of which they are chiefly composed.
5 Chemung . . . . . . sandstones and sandy shales 4 Hamilton . . . . . . shales and sandstones 3 Corniferous . . . . . . limestones 2 Oriskany . . . . . . sandstones 1 Helderberg . . . . . . limestones
The Helderberg is a transition epoch referred by some geologists to the Silurian. The thin sandstones of the Oriskany mark an epoch when waves worked over the deposits of former coastal plains. The limestones of the Corniferous testify to a warm and clear wide sea which extended from the Hudson to beyond the Mississippi. Corals throve luxuriantly, and their remains, with those of mollusks and other lime-secreting animals, built up great beds of limestone. The bordering continents, as during the later Silurian, must now have been monotonous lowlands which sent down little of even the finest waste to the sea.
In the Hamilton the clear seas of the previous epoch became clouded with mud. The immense deposits of coarse sandstones and sandy shales of the Chemung, which are found off what was at the time the west coast of Appalachia, prove an uplift of that ancient continent.
The Chemung series extends from the Catskill Mountains to northeastern Ohio and south to northeastern Tennessee, covering an area of not less than a hundred thousand square miles. In eastern New York it attains three thousand feet in thickness; in Pennsylvania it reaches the enormous thickness of two miles; but it rapidly thins to the west. Everywhere the Chemung is made of thin beds of rapidly alternating coarse and fine sands and clays, with an occasional pebble layer, and hence is a shallow-water deposit. The fine material has not been thoroughly winnowed from the coarse by the long action of strong waves and tides. The sands and clays have undergone little more sorting than is done by rivers. We must regard the Chemung sandstones as deposits made at the mouths of swift, turbid rivers in such great amount that they could be little sorted and distributed by waves.
Over considerable areas the Chemung sandstones bear little or no trace of the action of the sea. The Catskill Mountains, for example, have as their summit layers some three thousand feet of coarse red sandstones of this series, whose structure is that of river deposits, and whose few fossils are chiefly of fresh-water types. The Chemung is therefore composed of delta deposits, more or less worked over by the sea. The bulk of the Chemung equals that of the Sierra Nevada Mountains. To furnish this immense volume of sediment a great mountain range, or highland, must have been upheaved where the Appalachian lowland long had been. To what height the Devonian mountains of Appalachia attained cannot be told from the volume of the sediments wasted from them, for they may have risen but little faster than they were worn down by denudation. We may infer from the character of the waste which they furnished to the Chemung shores that they did not reach an Alpine height. The grains of the Chemung sandstones are not those which would result from mechanical disintegration, as by frost on high mountain peaks, but are rather those which would be left from the long chemical decay of siliceous crystalline rocks; for the more soluble minerals are largely wanting. The red color of much of the deposits points to the same conclusion. Red residual clays accumulated on the mountain sides and upland summits, and were washed as ocherous silt to mingle with the delta sands. The iron- bearing igneous rocks of the oldland also contributed by their decay iron in solution to the rivers, to be deposited in films of iron oxide about the quartz grains of the Chemung sandstones, giving them their reddish tints.
LIFE OF THE DEVONIANPLANTS. The lands were probably clad with verdure during Silurian times, if not still earlier; for some rare remains of ferns and other lowly types of vegetation have been found in the strata of that system. But it is in the Devonian that we discover for the first time the remains of extensive and luxuriant forests. This rich flora reached its climax in the Carboniferous, and it will be more convenient to describe its varied types in the next chapter.
RHIZOCARPS. In the shales of the Devonian are found microscopic spores of rhizocarps in such countless numbers that their weight must be reckoned in hundreds of millions of tons. It would seem that these aquatic plants culminated in this period, and in widely distant portions of the earth swampy flats and shallow lagoons were filled with vegetation of this humble type, either growing from the bottom or floating free upon the surface. It is to the resinous spores of the rhizocarps that the petroleum and natural gas from Devonian rocks are largely due. The decomposition of the spores has made the shales highly bituminous, and the oil and gas have accumulated in the reservoirs of overlying porous sandstones.
INVERTEBRATES. We must pass over the ever-changing groups of the invertebrates with the briefest notice. Chain corals became extinct at the close of the Silurian, but other corals were extremely common in the Devonian seas. At many places corals formed thin reefs, as at Louisville, Kentucky, where the hardness of the reef rock is one of the causes of the Falls of the Ohio.
Sponges, echinoderms, brachiopods, and mollusks were abundant. The cephalopods take a new departure. So far in all their various forms, whether straight, as the Orthoceras, or curved, or close- coiled as in the nautilus, the septum, or partition dividing the chambers, met the inner shell along a simple line, like that of the rim of a saucer. There now begins a growth of the septum by which its edges become sharply corrugated, and the suture, or line of juncture of the septum and the shell, is thus angled. The group in which this growth of the septum takes place is called the GONIATITE (Greek GONIA, angle).
VERTEBRATES. It is with the greatest interest that we turn now to study the backboned animals of the Devonian; for they are believed to be the ancestors of the hosts of vertebrates which have since dominated the earth. Their rudimentary structures foreshadowed what their descendants were to be, and give some clue to the earliest vertebrates from which they sprang. Like those whose remains are found in the lower Paleozoic systems, all of these Devonian vertebrates were aquatic and go under the general designation of fishes.
The lowest in grade and nearest, perhaps, to the ancestral type of vertebrates, was the problematic creature, an inch or so long, of Figure 297. Note the circular mouth not supplied with jaws, the lack of paired fins, and the symmetric tail fin, with the column of cartilaginous, ringlike vertebrae running through it to the end. The animal is probably to be placed with the jawless lampreys and hags,—a group too low to be included among true fishes.
OSTRACODERMS. This archaic group, long since extinct, is also too lowly to rank among the true fishes, for its members have neither jaws nor paired fins. These small, fishlike forms were cased in front with bony plates developed in the skin and covered in the rear with scales. The vertebrae were not ossified, for no trace of them has been found.
DEVONIAN FISHES. The TRUE FISHES of the Devonian can best be understood by reference to their descendants now living. Modern fishes are divided into several groups: SHARKS and their allies; DIPNOANS; GANOIDS, such as the sturgeon and gar; and TELEOSTS,— most common fishes, such as the perch and cod.
SHARKS. Of all groups of living fishes the sharks are the oldest and still retain most fully the embryonic characters of their Paleozoic ancestors. Such characters are the cartilaginous skeleton, and the separate gill slits with which the throat wall is pierced and which are arranged in line like the gill openings of the lamprey. The sharks of the Silurian and Devonian are known to us chiefly by their teeth and fin spines, for they were unprotected by scales or plates, and were devoid of a bony skeleton. Figure 299 is a restoration of an archaic shark from a somewhat higher horizon. Note the seven gill slits and the lappetlike paired fins. These fins seem to be remnants of the continuous fold of skin which, as embryology teaches, passed from fore to aft down each side of the primitive vertebrate.
Devonian sharks were comparatively small. They had not evolved into the ferocious monsters which were later to be masters of the seas.
DIPNOANS, OR LUNG FISHES. These are represented to-day by a few peculiar fishes and are distinguished by some high structures which ally them with amphibians. An air sac with cellular spaces is connected with the gullet and serves as a rudimentary lung. It corresponds with the swim bladder of most modern fishes, and appears to have had a common origin with it. We may conceive that the primordial fishes not only had gills used in breathing air dissolved in water, but also developed a saclike pouch off the gullet. This sac evolved along two distinct lines. On the line of the ancestry of most modern fishes its duct was closed and it became the swim bladder used in flotation and balancing. On another line of descent it was left open, air was swallowed into it, and it developed into the rudimentary lung of the dipnoans and into the more perfect lungs of the amphibians and other air- breathing vertebrates.
One of the ancient dipnoans is illustrated in Figure 300. Some of the members of this order were, like the ostracoderms, cased in armor, but their higher rank is shown by their powerful jaws and by other structures. Some of these armored fishes reached twenty- five feet in length and six feet across the head. They were the tyrants of the Devonian seas.
GANOIDS. These take their name from their enameled plates or scales of bone. The few genera now surviving are the descendants of the tribes which swarmed in the Devonian seas. A restoration of one of a leading order, the FRINGE-FINNED ganoids, is given in Figure 301. The side fins, which correspond to the limbs of the higher vertebrates, are quite unlike those of most modern fishes. Their rays, instead of radiating from a common base, fringe a central lobe which contains a cartilaginous axis. The teeth of the Devonian ganoids show a complicated folded structure.
GENERAL CHARACTERISTICS OF DEVONIAN FISHES. THE NOTOCHORD IS PERSISTENT. The notochord is a continuous rod of cartilage, or gristle, which in the embryological growth of vertebrate animals supports the spinal nerve cord before the formation of the vertebrae. In most modern fishes and in all higher vertebrates the notochord is gradually removed as the bodies of the vertebrae are formed about it; but in the Devonian fishes it persists through maturity and the vertebrae remain incomplete.
THE SKELETON IS CARTILAGINOUS. This also is an embryological characteristic. In the Devonian fishes the vertebrae, as well as the other parts of the skeleton, have not ossified, or changed to bone, but remain in their primitive cartilaginous condition.
THE TAIL FIN IS VERTEBRATED. The backbone runs through the fin and is fringed above and below with its vertical rays. In some fishes with vertebrated tail fins the fin is symmetric, and this seems to be the primitive type. In others the tail fin is unsymmetric: the backbone runs into the upper lobe, leaving the two lobes of unequal size. In most modern
Comments (0)