Science
Read books online » Science » Five of Maxwell's Papers by James Clerk Maxwell (warren buffett book recommendations .txt) 📖

Book online «Five of Maxwell's Papers by James Clerk Maxwell (warren buffett book recommendations .txt) 📖». Author James Clerk Maxwell



1 2 3 4 5 6 7 8 9
Go to page:
from which the true relation between hypotheses so different can be seen.

I shall only make one more remark on the relation between Mathematics and Physics. In themselves, one is an operation of the mind, the other is a dance of molecules. The molecules have laws of their own, some of which we select as most intelligible to us and most amenable to our calculation. We form a theory from these partial data, and we ascribe any deviation of the actual phenomena from this theory to disturbing causes. At the same time we confess that what we call disturbing causes are simply those parts of the true circumstances which we do not know or have neglected, and we endeavour in future to take account of them. We thus acknowledge that the so-called disturbance is a mere figment of the mind, not a fact of nature, and that in natural action there is no disturbance.

But this is not the only way in which the harmony of the material with the mental operation may be disturbed. The mind of the mathematician is subject to many disturbing causes, such as fatigue, loss of memory, and hasty conclusions; and it is found that, from these and other causes, mathematicians make mistakes.

I am not prepared to deny that, to some mind of a higher order than ours, each of these errors might be traced to the regular operation of the laws of actual thinking; in fact we ourselves often do detect, not only errors of calculation, but the causes of these errors. This, however, by no means alters our conviction that they are errors, and that one process of thought is right and another process wrong. I

One of the most profound mathematicians and thinkers of our time, the late George Boole, when reflecting on the precise and almost mathematical character of the laws of right thinking as compared with the exceedingly perplexing though perhaps equally determinate laws of actual and fallible thinking, was led to another of those points of view from which Science seems to look out into a region beyond her own domain.

“We must admit,” he says, “that there exist laws” (of thought) “which even the rigour of their mathematical forms does not preserve from violation. We must ascribe to them an authority, the essence of which does not consist in power, a supremacy which the analogy of the inviolable order of the natural world in no way assists us to comprehend.”

***

Introductory Lecture on Experimental Physics.

James Clerk Maxwell

 

The University of Cambridge, in accordance with that law of its evolution, by which, while maintaining the strictest continuity between the successive phases of its history, it adapts itself with more or less promptness to the requirements of the times, has lately instituted a course of Experimental Physics. This course of study, while it requires us to maintain in action all those powers of attention and analysis which have been so long cultivated in the University, calls on us to exercise our senses in observation, and our hands in manipulation. The familiar apparatus of pen, ink, and paper will no longer be sufficient for us, and we shall require more room than that afforded by a seat at a desk, and a wider area than that of the black board. We owe it to the munificence of our Chancellor, that, whatever be the character in other respects of the experiments which we hope hereafter to conduct, the material facilities for their full development will be upon a scale which has not hitherto been surpassed.

The main feature, therefore, of Experimental Physics at Cambridge is the Devonshire Physical Laboratory, and I think it desirable that on the present occasion, before we enter on the details of any special study, we should consider by what means we, the University of Cambridge, may, as a living body, appropriate and vitalise this new organ, the outward shell of which we expect soon to rise before us. The course of study at this University has always included Natural Philosophy, as well as Pure Mathematics. To diffuse a sound knowledge of Physics, and to imbue the minds of our students with correct dynamical principles, have been long regarded as among our highest functions, and very few of us can now place ourselves in the mental condition in which even such philosophers as the great Descartes were involved in the days before Newton had announced the true laws of the motion of bodies. Indeed the cultivation and diffusion of sound dynamical ideas has already effected a great change in the language and thoughts even of those who make no pretensions to science, and we are daily receiving fresh proofs that the popularisation of scientific doctrines is producing as great an alteration in the mental state of society as the material applications of science are effecting in its outward life. Such indeed is the respect paid to science, that the most absurd opinions may become current, provided they are expressed in language, the sound of which recals some well-known scientific phrase. If society is thus prepared to receive all kinds of scientific doctrines, it is our part to provide for the diffusion and cultivation, not only of true scientific principles, but of a spirit of sound criticism, founded on an examination of the evidences on which statements apparently scientific depend.

When we shall be able to employ in scientific education, not only the trained attention of the student, and his familiarity with symbols, but the keenness of his eye, the quickness of his ear, the delicacy of his touch, and the adroitness of his fingers, we shall not only extend our influence over a class of men who are not fond of cold abstractions, but, by opening at once all the gateways of knowledge, we shall ensure the association of the doctrines of science with those elementary sensations which form the obscure background of all our conscious thoughts, and which lend a vividness and relief to ideas, which, when presented as mere abstract terms, are apt to fade entirely from the memory.

In a course of Experimental Physics we may consider either the Physics or the Experiments as the leading feature. We may either employ the experiments to illustrate the phenomena of a particular branch of Physics, or we may make some physical research in order to exemplify a particular experimental method. In the order of time, we should begin, in the Lecture Room, with a course of lectures on some branch of Physics aided by experiments of illustration, and conclude, in the Laboratory, with a course of experiments of research.

Let me say a few words on these two classes of experiments,—Experiments of Illustration and Experiments of Research. The aim of an experiment of illustration is to throw light upon some scientific idea so that the student may be enabled to grasp it. The circumstances of the experiment are so arranged that the phenomenon which we wish to observe or to exhibit is brought into prominence, instead of being obscured and entangled among other phenomena, as it is when it occurs in the ordinary course of nature. To exhibit illustrative experiments, to encourage others to make them, and to cultivate in every way the ideas on which they throw light, forms an important part of our duty. The simpler the materials of an illustrative experiment, and the more familiar they are to the student, the more thoroughly is he likely to acquire the idea which it is meant to illustrate. The educational value of such experiments is often inversely proportional to the complexity of the apparatus. The student who uses home-made apparatus, which is always going wrong, often learns more than one who has the use of carefully adjusted instruments, to which he is apt to trust, and which he dares not take to pieces.

It is very necessary that those who are trying to learn from books the facts of physical science should be enabled by the help of a few illustrative experiments to recognise these facts when they meet with them out of doors. Science appears to us with a very different aspect after we have found out that it is not in lecture rooms only, and by means of the electric light projected on a screen, that we may witness physical phenomena, but that we may find illustrations of the highest doctrines of science in games and gymnastics, in travelling by land and by water, in storms of the air and of the sea, and wherever there is matter in motion.

This habit of recognising principles amid the endless variety of their action can never degrade our sense of the sublimity of nature, or mar our enjoyment of its beauty. On the contrary, it tends to rescue our scientific ideas from that vague condition in which we too often leave them, buried among the other products of a lazy credulity, and to raise them into their proper position among the doctrines in which our faith is so assured, that we are ready at all times to act on them.

Experiments of illustration may be of very different kinds. Some may be adaptations of the commonest operations of ordinary life, others may be carefully arranged exhibitions of some phenomenon which occurs only under peculiar conditions. They all, however, agree in this, that their aim is to present some phenomenon to the senses of the student in such a way that he may associate with it the appropriate scientific idea. When he has grasped this idea, the experiment which illustrates it has served its purpose.

In an experiment of research, on the other hand, this is not the principal aim. It is true that an experiment, in which the principal aim is to see what happens under certain conditions, may be regarded as an experiment of research by those who are not yet familiar with the result, but in experimental researches, strictly so called, the ultimate object is to measure something which we have already seen—to obtain a numerical estimate of some magnitude.

Experiments of this class—those in which measurement of some kind is involved, are the proper work of a Physical Laboratory. In every experiment we have first to make our senses familiar with the phenomenon, but we must not stop here, we must find out which of its features are capable of measurement, and what measurements are required in order to make a complete specification of the phenomenon. We must then make these measurements, and deduce from them the result which we require to find.

This characteristic of modern experiments—that they consist principally of measurements,—is so prominent, that the opinion seems to have got abroad, that in a few years all the great physical constants will have been approximately estimated, and that the only occupation which will then be left to men of science will be to carry on these measurements to another place of decimals.

If this is really the state of things to which we are approaching, our Laboratory may perhaps become celebrated as a place of conscientious labour and consummate skill, but it will be out of place in the University, and ought rather to be classed with the other great workshops of our country, where equal ability is directed to more useful ends.

But we have no right to think thus of the unsearchable riches of creation, or of the untried fertility of those fresh minds into which these riches will continue to be poured. It may possibly be true that, in some of those fields of discovery which lie open to such rough observations as can be made without artificial methods, the great explorers of former times have appropriated most of what is valuable, and that the gleanings which remain are sought after, rather for their abstruseness, than for their intrinsic worth. But the history of science shews that even during that phase of her progress in which she devotes herself to improving the accuracy

1 2 3 4 5 6 7 8 9
Go to page:

Free ebook «Five of Maxwell's Papers by James Clerk Maxwell (warren buffett book recommendations .txt) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment