Science
Read books online » Science » Five of Maxwell's Papers by James Clerk Maxwell (warren buffett book recommendations .txt) 📖

Book online «Five of Maxwell's Papers by James Clerk Maxwell (warren buffett book recommendations .txt) 📖». Author James Clerk Maxwell



1 2 3 4 5 6 7 8 9
Go to page:

The Project Gutenberg EBook of Five of Maxwell’s Papers, by James Clerk Maxwell (#1 in our series by James Clerk Maxwell)

Copyright laws are changing all over the world. Be sure to check the copyright laws for your country before downloading or redistributing this or any other Project Gutenberg eBook.

This header should be the first thing seen when viewing this Project Gutenberg file. Please do not remove it. Do not change or edit the header without written permission.

Please read the “legal small print,” and other information about the eBook and Project Gutenberg at the bottom of this file. Included is important information about your specific rights and restrictions in how the file may be used. You can also find out about how to make a donation to Project Gutenberg, and how to get involved.

 

**Welcome To The World of Free Plain Vanilla Electronic Texts**

**eBooks Readable By Both Humans and By Computers, Since 1971**

*****These eBooks Were Prepared By Thousands of Volunteers!*****

 

Title: Five of Maxwell’s Papers

Author: James Clerk Maxwell

Release Date: January, 2004 [EBook #4908] [Yes, we are more than one year ahead of schedule] [This file was first posted on March 24, 2002]

Edition: 10

Language: English

Character set encoding: ASCII

*** START OF THE PROJECT GUTENBERG EBOOK, FIVE OF MAXWELL’S PAPERS ***

 

This eBook was produced by Gordon Keener.

This eBook includes 5 papers or speeches by James Clerk Maxwell. Each is separated by three asterisks (‘***’).

The contents are:

 

Foramen Centrale Theory of Compound Colours Poinsot’s Theory Address to the Mathematical Introductory Lecture

***

On the Unequal Sensibility of the Foramen Centrale to Light of different Colours.

James Clerk Maxwell

 

[From the Report of the British Association, 1856.]

 

When observing the spectrum formed by looking at a long vertical slit through a simple prism, I noticed an elongated dark spot running up and down in the blue, and following the motion of the eye as it moved up and down the spectrum, but refusing to pass out of the blue into the other colours. It was plain that the spot belonged both to the eye and to the blue part of the spectrum. The result to which I have come is, that the appearance is due to the yellow spot on the retina, commonly called the Foramen Centrale of Soemmering. The most convenient method of observing the spot is by presenting to the eye in not too rapid succession, blue and yellow glasses, or, still better, allowing blue and yellow papers to revolve slowly before the eye. In this way the spot is seen in the blue. It fades rapidly, but is renewed every time the yellow comes in to relieve the effect of the blue. By using a Nicol’s prism along with this apparatus, the brushes of Haidinger are well seen in connexion with the spot, and the fact of the brushes being the spot analysed by polarized light becomes evident. If we look steadily at an object behind a series of bright bars which move in front of it, we shall see a curious bending of the bars as they come up to the place of the yellow spot. The part which comes over the spot seems to start in advance of the rest of the bar, and this would seem to indicate a greater rapidity of sensation at the yellow spot than in the surrounding retina. But I find the experiment difficult, and I hope for better results from more accurate observers.

***

On the Theory of Compound Colours with reference to Mixtures of Blue and Yellow Light.

James Clerk Maxwell

 

[From the Report of the British Association, 1856.]

 

When we mix together blue and yellow paint, we obtain green paint. This fact is well known to all who have handled colours; and it is universally admitted that blue and yellow make green. Red, yellow, and blue, being the primary colours among painters, green is regarded as a secondary colour, arising from the mixture of blue and yellow. Newton, however, found that the green of the spectrum was not the same thing as the mixture of two colours of the spectrum, for such a mixture could be separated by the prism, while the green of the spectrum resisted further decomposition. But still it was believed that yellow and blue would make a green, though not that of the spectrum. As far as I am aware, the first experiment on the subject is that of M. Plateau, who, before 1819, made a disc with alternate sectors of prussian blue and gamboge, and observed that, when spinning, the resultant tint was not green, but a neutral gray, inclining sometimes to yellow or blue, but never to green. Prof. J. D. Forbes of Edinburgh made similar experiments in 1849, with the same result. Prof. Helmholtz of Konigsberg, to whom we owe the most complete investigation on visible colour, has given the true explanation of this phenomenon. The result of mixing two coloured powders is not by any means the same as mixing the beams of light which flow from each separately. In the latter case we receive all the light which comes either from the one powder or the other. In the former, much of the light coming from one powder falls on particles of the other, and we receive only that portion which has escaped absorption by one or other. Thus the light coming from a mixture of blue and yellow powder, consists partly of light coming directly from blue particles or yellow particles, and partly of light acted on by both blue and yellow particles. This latter light is green, since the blue stops the red, yellow, and orange, and the yellow stops the blue and violet. I have made experiments on the mixture of blue and yellow light—by rapid rotation, by combined reflexion and transmission, by viewing them out of focus, in stripes, at a great distance, by throwing the colours of the spectrum on a screen, and by receiving them into the eye directly; and I have arranged a portable apparatus by which any one may see the result of this or any other mixture of the colours of the spectrum. In all these cases blue and yellow do not make green. I have also made experiments on the mixture of coloured powders. Those which I used principally were “mineral blue” (from copper) and “chrome-yellow.” Other blue and yellow pigments gave curious results, but it was more difficult to make the mixtures, and the greens were less uniform in tint. The mixtures of these colours were made by weight, and were painted on discs of paper, which were afterwards treated in the manner described in my paper “On Colour as perceived by the Eye,” in the Transactions of the Royal Society of Edinburgh, Vol. XXI. Part 2. The visible effect of the colour is estimated in terms of the standard-coloured papers:—vermilion (V), ultramarine (U), and emerald-green (E). The accuracy of the results, and their significance, can be best understood by referring to the paper before mentioned. I shall denote mineral blue by B, and chrome-yellow by Y; and B3 Y5 means a mixture of three parts blue and five parts yellow.

 

Given Colour. Standard Colours. Coefficient V. U. E. of brightness.

B8 , 100 = 2 36 7 ………… 45 B7 Y1, 100 = 1 18 17 ………… 37 B6 Y2, 100 = 4 11 34 ………… 49 B5 Y3, 100 = 9 5 40 ………… 54 B4 Y4, 100 = 15 1 40 ………… 56 B3 Y5, 100 = 22 - 2 44 ………… 64 B2 Y6, 100 = 35 -10 51 ………… 76 B1 Y7, 100 = 64 -19 64 ………… 109 Y8, 100 = 180 -27 124 ………… 277

 

The columns V, U, E give the proportions of the standard colours which are equivalent to 100 of the given colour; and the sum of V, U, E gives a coefficient, which gives a general idea of the brightness. It will be seen that the first admixture of yellow diminishes the brightness of the blue. The negative values of U indicate that a mixture of V, U, and E cannot be made equivalent to the given colour. The experiments from which these results were taken had the negative values transferred to the other side of the equation. They were all made by means of the colour-top, and were verified by repetition at different times. It may be necessary to remark, in conclusion, with reference to the mode of registering visible colours in terms of three arbitrary standard colours, that it proceeds upon that theory of three primary elements in the sensation of colour, which treats the investigation of the laws of visible colour as a branch of human physiology, incapable of being deduced from the laws of light itself, as set forth in physical optics. It takes advantage of the methods of optics to study vision itself; and its appeal is not to physical principles, but to our consciousness of our own sensations.

***

On an Instrument to illustrate Poinsot’s Theory of Rotation.

James Clerk Maxwell

 

[From the Report of the British Association, 1856.]

 

In studying the rotation of a solid body according to Poinsot’s method, we have to consider the successive positions of the instantaneous axis of rotation with reference both to directions fixed in space and axes assumed in the moving body. The paths traced out by the pole of this axis on the invariable plane and on the central ellipsoid form interesting subjects of mathematical investigation. But when we attempt to follow with our eye the motion of a rotating body, we find it difficult to determine through what point of the body the instantaneous axis passes at any time,—and to determine its path must be still more difficult. I have endeavoured to render visible the path of the instantaneous axis, and to vary the circumstances of motion, by means of a top of the same kind as that used by Mr Elliot, to illustrate precession*. The body of the instrument is a hollow cone of wood, rising from a ring, 7 inches in diameter and 1 inch thick. An iron axis, 8 inches long, screws into the vertex of the cone. The lower extremity has a point of hard steel, which rests in an agate cup, and forms the support of the instrument. An iron nut, three ounces in weight, is made to screw on the axis, and to be fixed at any point; and in the wooden ring are screwed four bolts, of three ounces, working horizontally, and four bolts, of one ounce, working vertically. On the upper part of the axis is placed a disc of card, on which are drawn four concentric rings. Each ring is divided into four quadrants, which are coloured red, yellow, green, and blue. The spaces between the rings are white. When the top is in motion, it is easy to see in which quadrant the instantaneous axis is at any moment and the distance between it and the axis of the instrument; and we observe,—1st. That the instantaneous axis travels in a closed curve, and returns to its original position in the body. 2ndly. That by working the vertical bolts, we can make the axis of the instrument the centre of this closed curve. It will then be one of the principal axes of inertia. 3rdly. That,

1 2 3 4 5 6 7 8 9
Go to page:

Free ebook «Five of Maxwell's Papers by James Clerk Maxwell (warren buffett book recommendations .txt) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment