Science
Read books online » Science » Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖

Book online «Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖». Author Henry Ernest Dudeney



1 ... 70 71 72 73 74 75 76 77 78 ... 87
Go to page:
it will at once be seen that the two problems are identical. The central square can, of course, be ignored, since no knight can ever enter it. Now, regard the toadstools as buttons and the connecting lines as strings, as in Diagram B. Then by disentangling these strings we can clearly present the diagram in the form shown in Diagram C, where the relationship between the buttons is precisely the same as in B. Any solution on C will be applicable to B, and to A. Place your white knights on 1 and 3 and your black knights on 6 and 8 in the C diagram, and the simplicity of the solution will be very evident. You have simply to move the knights round the circle in one direction or the other. Play over the moves given above, and you will find that every little difficulty has disappeared.

In Diagram D I give another familiar puzzle that first appeared in a book published in Brussels in 1789, Les Petites Aventures de Jerome Sharp. Place seven counters on seven of the eight points in the following manner. You must always touch a point that is vacant with a counter, and then move it along a straight line leading from that point to the next vacant point (in either direction), where you deposit the counter. You proceed in the same way until all the counters are placed. Remember you always touch a vacant place and slide the counter from it to the next place, which must be also vacant. Now, by the "buttons and string" method of simplification we can transform the diagram into E. Then the solution becomes obvious. "Always move to the point that you last moved from." This is not, of course, the only way of placing the counters, but it is the simplest solution to carry in the mind.

There are several puzzles in this book that the reader will find lend themselves readily to this method.

342.—THE MANDARIN'S PUZZLE.—solution

The rather perplexing point that the solver has to decide for himself in attacking this puzzle is whether the shaded numbers (those that are shown in their right places) are mere dummies or not. Ninety-nine persons out of a hundred might form the opinion that there can be no advantage in moving any of them, but if so they would be wrong.

The shortest solution without moving any shaded number is in thirty-two moves. But the puzzle can be solved in thirty moves. The trick lies in moving the 6, or the 15, on the second move and replacing it on the nineteenth move. Here is the solution: 2, 6, 13, 4, 1, 21, 4, 1, 10, 2, 21, 10, 2, 5, 22, 16, 1, 13, 6, 19, 11, 2, 5, 22, 16, 5, 13, 4, 10, 21. Thirty moves.

343.—EXERCISE FOR PRISONERS.—solution

There are eighty different arrangements of the numbers in the form of a perfect knight's path, but only forty of these can be reached without two men ever being in a cell at the same time. Two is the greatest number of men that can be given a complete rest, and though the knight's path can be arranged so as to leave either 7 and 13, 8 and 13, 5 and 7, or 5 and 13 in their original positions, the following four arrangements, in which 7 and 13 are unmoved, are the only ones that can be reached under the moving conditions. It therefore resolves itself into finding the fewest possible moves that will lead up to one of these positions. This is certainly no easy matter, and no rigid rules can be laid down for arriving at the correct answer. It is largely a matter for individual judgment, patient experiment, and a sharp eye for revolutions and position.

As a matter of fact, the position C can be reached in as few as sixty-six moves in the following manner: 12, 11, 15, 12, 11, 8, 4, 3, 2, 6, 5, 1, 6, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 12, 11, 3, 2, 5, 10, 15, 6, 1, 8, 4, 9, 8, 1, 6, 4, 9, 12, 2, 5, 10, 15, 4, 9, 12, 2, 5, 3, 11, 14, 2, 5, 14, 11 = 66 moves. Though this is the shortest that I know of, and I do not think it can be beaten, I cannot state positively that there is not a shorter way yet to be discovered. The most tempting arrangement is certainly A; but things are not what they seem, and C is really the easiest to reach.

If the bottom left-hand corner cell might be left vacant, the following is a solution in forty-five moves by Mr. R. Elrick: 15, 11, 10, 9, 13, 14, 11, 10, 7, 8, 4, 3, 8, 6, 9, 7, 12, 4, 6, 9, 5, 13, 7, 5, 13, 1, 2, 13, 5, 7, 1, 2, 13, 8, 3, 6, 9, 12, 7, 11, 14, 1, 11, 14, 1. But every man has moved.

344.—THE KENNEL PUZZLE.—solution

The first point is to make a choice of the most promising knight's string and then consider the question of reaching the arrangement in the fewest moves. I am strongly of opinion that the best string is the one represented in the following diagram, in which it will be seen that each successive number is a knight's move from the preceding one, and that five of the dogs (1, 5, 10, 15, and 20) never leave their original kennels.

This position may be arrived at in as few as forty-six moves, as follows: 16—21, 16—22, 16—23, 17—16, 12—17, 12—22, 12—21,7—12, 7—17, 7—22, 11—12, 11—17, 2—7, 2—12, 6—11, 8—7, 8—6, 13—8, 18—13, 11—18, 2—17, 18—12, 18—7, 18—2, 13—7, 3—8, 3—13, 4—3, 4—8, 9—4, 9—3, 14—9, 14—4, 19—14, 19—9, 3—14, 3—19, 6—12, 6—13, 6—14, 17—11, 12—16, 2—12, 7—17, 11—13, 16—18 = 46 moves. I am, of course, not able to say positively that a solution cannot be discovered in fewer moves, but I believe it will be found a very hard task to reduce the number.

345.—THE TWO PAWNS.—solution

Call one pawn A and the other B. Now, owing to that optional first move, either pawn may make either 5 or 6 moves in reaching the eighth square. There are, therefore, four cases to be considered: (1) A 6 moves and B 6 moves; (2) A 6 moves and B 5 moves; (3) A 5 moves and B 6 moves; (4) A 5 moves and B 5 moves. In case (1) there are 12 moves, and we may select any 6 of these for A. Therefore 7 × 8 × 9 × 10 × 11 × 12 divided by 1 × 2 × 3 × 4 × 5 × 6 gives us the number of variations for this case—that is, 924. Similarly for case (2), 6 selections out of 11 will be 462; in case (3), 5 selections out of 11 will also be 462; and in case (4), 5 selections out of 10 will be 252. Add these four numbers together and we get 2,100, which is the correct number of different ways in which the pawns may advance under the conditions. (See No. 270, on p. 204.)

346.—SETTING THE BOARD.—solution

The White pawns may be arranged in 40,320 ways, the White rooks in 2 ways, the bishops in 2 ways, and the knights in 2 ways. Multiply these numbers together, and we find that the White pieces may be placed in 322,560 different ways. The Black pieces may, of course, be placed in the same number of ways. Therefore the men may be set up in 322,560 × 322,560 = 104,044,953,600 ways. But the point that nearly everybody overlooks is that the board may be placed in two different ways for every arrangement. Therefore the answer is doubled, and is 208,089,907,200 different ways.

347.—COUNTING THE RECTANGLES.—solution

There are 1,296 different rectangles in all, 204 of which are squares, counting the square board itself as one, and 1,092 rectangles that are not squares. The general formula is that a board of n2 squares contains ((n2 + n)2)/4 rectangles, of which (2n3 + 3n2 + n)/6 are squares and (3n4 + 2n3 - 3n2 - 2n)/12 are rectangles that are not squares. It is curious and interesting that the total number of rectangles is always the square of the triangular number whose side is n.

348.—THE ROOKERY.—solution

The answer involves the little point that in the final position the numbered rooks must be in numerical order in the direction contrary to that in which they appear in the original diagram, otherwise it cannot be solved. Play the rooks in the following order of their numbers. As there is never more than one square to which a rook can move (except on the final move), the notation is obvious—5, 6, 7, 5, 6, 4, 3, 6, 4, 7, 5, 4, 7, 3, 6, 7, 3, 5, 4, 3, 1, 8, 3, 4, 5, 6, 7, 1, 8, 2, 1, and rook takes bishop, checkmate. These are the fewest possible moves—thirty-two. The Black king's moves are all forced, and need not be given.

349.—STALEMATE.—solution

Working independently, the same position was arrived at by Messrs. S. Loyd, E.N. Frankenstein, W.H. Thompson, and myself. So the following may be accepted as the best solution possible to this curious problem :—

White. Black. 1. P—Q4 1. P—K4 2. Q—Q3 2. Q—R5 3. Q—KKt3 3. B—Kt5 ch 4. Kt—Q2 4. P—QR4 5. P—R4 5. P—Q3 6. P—R3 6. B—K3 7. R—R3 7. P—KB4 8. Q—R2 8. P—B4 9. R—KKt3 9. B—Kt6 10. P—QB4 10. P—B5 11. P—B3 11. P—K5 12. P—Q5 12. P—K6

And White is stalemated.

We give a diagram of the curious position arrived at. It will be seen that not one of White's pieces may be moved.

350.—THE FORSAKEN KING.—solution

Play as follows:—

White. Black. 1. P to K 4th 1. Any move 2. Q to Kt 4th 2. Any move except on KB file (a) 3. Q to Kt 7th 3. K moves to royal row 4. B to Kt 5th 4. Any move 5. Mate in two moves If 3. K other than to royal row 4. P to Q 4th 4. Any move 5. Mate in two moves (a) If 2. Any move on KB file 3. Q to Q 7th 3. K moves to royal row 4. P to Q Kt 3rd 4. Any move 5. Mate in two moves If 3. K other than to royal row 4. P to Q 4th 4. Any move 5. Mate in two moves

Of course, by "royal row" is meant the row on which the king originally stands at the beginning of a game. Though, if Black plays badly, he may, in certain positions, be mated in fewer moves, the above provides for every variation he can possibly bring about.

351.—THE CRUSADER.—solution

White. Black. 1. Kt to QB 3rd 1. P to Q 4th 2. Kt takes QP 2. Kt to QB 3rd 3. Kt takes KP 3. P to KKt 4th 4. Kt takes B 4. Kt to KB 3rd 5. Kt takes P 5. Kt to K 5th 6. Kt takes Kt 6. Kt to B 6th 7. Kt takes Q 7. R to KKt sq 8. Kt takes BP 8. R to KKt 3rd 9. Kt takes P 9. R to K 3rd 10. Kt takes P 10. Kt to Kt 8th 11. Kt takes B 11. R to R 6th 12. Kt takes R 12. P to Kt 4th 13. Kt
1 ... 70 71 72 73 74 75 76 77 78 ... 87
Go to page:

Free ebook «Amusements in Mathematics by Henry Ernest Dudeney (e books for reading txt) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment