The Art of Perfumery by George William Septimus Piesse (comprehension books TXT) 📖
- Author: George William Septimus Piesse
- Performer: 1425529070
Book online «The Art of Perfumery by George William Septimus Piesse (comprehension books TXT) 📖». Author George William Septimus Piesse
J.J. Bernoulli recommends for this purpose acetate of potash. When to an ethereal oil, contaminated with alcohol, dry acetate of potash is added, this salt dissolves in the alcohol, and forms a solution from which the volatile oil separates. If the oil be free from alcohol, this salt remains dry therein.
Wittstein, who speaks highly of this test, has suggested the following method of applying it as the best:—In a dry test-tube, about half an inch in diameter, and five or six inches long, put no more than eight grains of powdered dry acetate of potash; then fill the tube two-thirds full with the essential oil to be examined. The contents of the tube must be well stirred with a glass rod, taking care not to allow the salt to rise above the oil; afterwards set aside for a short time. If the salt be found at the bottom of the tube dry, it is evident that the oil contains no spirit. Oftentimes, instead of the dry salt, beneath the oil is found a clear syrupy fluid, which is a solution of the salt in the spirit, with which the oil was mixed. When the oil contains only a little spirit, a small portion of the solid salt will be found under the syrupy solution. Many essential oils frequently contain a trace of water, which does not materially interfere with this test, because, although the acetate of potash becomes moist thereby, it still retains its pulverent form.
A still more certain result may be obtained by distillation in a water-bath. All the essential oils which have a higher boiling-point than spirit, remain in the retort, whilst the spirit passes into the receiver with only a trace of the oil, where the alcohol may be recognized by the smell and taste. Should, however, a doubt exist, add to the distillate a little acetate of potash and strong sulphuric acid, and heat the mixture in a test-tube to the boiling-point, when the characteristic odor of acetic ether will be manifest, if any alcohol be present.
DETECTION OF POPPY AND OTHER DRYING OILS IN ALMOND AND OLIVE OILS.It is known that the olein of the drying oils may be distinguished from the olein of those oils which remain greasy in the air by the first not being convertible into elaidic acid, consequently it does not become solid. Professor Wimmer has recently proposed a convenient method for the formation of elaidin, which is applicable for the purpose of detecting the adulteration of almond and olive oils with drying oils. He produces nitrous acid by treating iron filings in a glass bottle with nitric acid. The vapor of nitrous acid is conducted through a glass tube into water, upon which the oil to be tested is placed. If the oil of almonds or olives contains only a small quantity of poppy oil when thus treated, it is entirely converted into crystallized elaidin, whilst the poppy oil swims on the top in drops.
COLORING MATTER OF VOLATILE OILS. BY G.E. SACHSSE.It is well known that most ethereal oils are colorless; however, there are a great number colored, some of which are blue, some green, and some yellow. Up to the present time the question has not been decided, whether it is the necessary property of ethereal oils to have a color, or whether their color is not due to the presence of some coloring matter which can be removed. It is most probable that their color arises from the presence of a foreign substance, as the colored ethereal oils can at first, by careful distillation, be obtained colorless, whilst later the colored portion passes over. Subsequent appearances lead to the solution of the question, and are certain evidence that ethereal oils, when they are colored, owe their color to peculiar substances which, by certain conditions, may be communicated from one oil to another. When a mixture of oils of wormwood, lemons, and cloves is subjected to distillation, the previously green-colored oil of wormwood passes over, at the commencement, colorless, while, towards the end of the distillation, after the receiver has been frequently charged, the oil of cloves distils over in very dense drops of a dark green color. It therefore appears that the green coloring matter of the oil of wormwood has been transferred to the oil of cloves.—Zeitschrift für Pharmacie.
ARTIFICIAL PREPARATION OF OIL OF CINNAMON. BY A. STRECKER.Some years since, Strecker has shown that styrone, which is obtained when styracine is treated with potash, is the alcohol of cinnamic acid. Wolff has converted this alcohol by oxidizing agents into cinnamic acid. The author has now proved that under the same conditions by which ordinary alcohol affords aldehyde, styrone affords the aldehyde of cinnamic acid, that is, oil of cinnamon. It is only necessary to moisten platinum black with styrone, and let it remain in the air some days, when by means of the bisulphite of potash the aldehyde double compound may be obtained in crystals, which should be washed in ether. By the addition of diluted sulphuric acid, the aldehyde of cinnamic acid is afterwards procured pure. These crystals also dissolve in nitric acid, and then form after a few moments crystals of the nitrate of the hyduret of cinnamyle. The conversion of styrone into the hyduret of cinnamyle by the action of the platinum black is shown by the following equation:
DETECTION OF SPIKE OIL AND TURPENTINE IN LAVENDER OIL BY DR. J. GASTELL.
There are two kinds of lavender oil known in commerce; one, which is very dear, and is obtained from the flowers of the Lavandula vera; the other is much cheaper, and is prepared from the flowers of the Lavandula spica. The latter is generally termed oil of spike. In the south of France, whether the oil be distilled from the flowers of the Lavandula vera or Lavandula spica, it is named oil of lavender.
By the distillation of the whole plant or only the stalk and the leaves, a small quantity of oil is obtained, which is rich in camphor, and is there called oil of spike. Pure oil of lavender should have a specific gravity from .876 to .880, and be completely soluble in five parts of alcohol of a specific gravity of .894. A greater specific gravity shows that it is mixed with oil of spike; and a less solubility, that it contains oil of turpentine.
DIFFERENT ORANGE-FLOWER WATERS FOUND IN COMMERCE BY M. LEGUAY.There are three sorts of orange-flower waters found in commerce. The first is distilled from the flowers; the second is made with distilled water and neroli; and the third is distilled from the leaves, the stems, and the young unripe fruit of the orange tree. The first may be easily distinguished by the addition of a few drops of sulphuric acid to some of the water in a tube; a fine rose color is almost immediately produced. The second also gives the same color when it is freshly prepared; but after a certain time, two or three months at the farthest, this color is no longer produced, and the aroma disappears completely. The third is not discolored by the addition of the sulphuric acid; it has scarcely any odor, and that rather an odor of the lemon plant than of orange-flowers.—Bulletin de la Société Pharmaceutique d'Indre et Loire.
A FORMULA FOR CONCENTRATED ELDER-FLOWER WATER.Krembs recommends the following process for making a concentrated elder-flower water, from which he states the ordinary water can be extemporaneously prepared, of excellent quality, and of uniform strength:—2 lbs. of the flowers are to be distilled with water until that which passes into the receiver has lost nearly all perfume. This will generally happen when from 15 to 18 pounds have passed over. To the distillate, 2 lbs. of alcohol are to be added, and the mixture distilled until about 5 lbs. are collected. This liquor contains all the odor of the flowers. To make the ordinary water, 2 ounces of the concentrated water are to be added to 10 ounces of distilled water.—Buchner's Report.
PRACTICAL REMARKS ON SPIRIT OF WINE. BY THOMAS ARNALL.The strength of spirit of wine is, by law, regulated by proof spirit (sp. gr. .920) as a standard; and accordingly as it is either stronger or weaker than the above, it is called so much per cent. above or below proof. The term per cent. is used in this instance in a rather peculiar sense. Thus, spirit of wine at 56 per cent. overproof, signifies that 100 gallons of it are equal to 156 gallons of proof spirit; while a spirit at 20 per cent. underproof, signifies that 100 gallons are equal to 80 gallons at proof. The rectified spirit of the Pharmacopœia is 56 per cent. overproof, and may be reduced to proof by strictly adhering to the directions there given, viz., to mix five measures with three of water. The result, however, will not be eight measures of proof spirit; in consequence of the contraction which ensues, there will be a deficiency of about ℥iv in each gallon. This must be borne in mind in preparing tinctures.
During a long series of experiments on the preparation of ethers, it appeared a desideratum to find a ready method of ascertaining how much spirit of any density would be equal to one chemical equivalent of absolute alcohol. By a modification of a rule employed by the Excise, this question may be easily solved. The Excise rule is as follows:—
To reduce from any given strength to any required strength, add the overproof per centage to 100, or subtract the underproof per centage from 100. Multiply the result by the quantity of spirit, and divide the product by the number obtained by adding the required per centage overproof, or subtracting the required per centage underproof, to or from 100, as the case may be. The result will give the measure of the spirit at the strength required.
Thus, suppose you wished to reduce 10 gallons of spirit, at 54 overproof, down to proof, add 54 to 100 = 154; multiply by the quantity, 10 gallons (154 × 10) = 1540. The required strength being proof, of course there is nothing either to add to or take from 100; therefore, 1540 divided by 100 = 15.4 gallons at proof; showing that 10 gallons must be made to measure 15 gallons, 3 pints, 4 fl. oz., by the addition of water.
To ascertain what quantity of spirit of any given strength will contain one equivalent of absolute alcohol. Add the overproof per centage of the given spirit to 100, as before; and with the number thus obtained divide 4062.183. The result gives in gallons the quantity equal to four equivalents (46 × 4).
Example.—How much spirit at 54 per cent. overproof is equal to 1 equivalent of absolute alcohol?
Here,
54 + 100 = 154 and 4062.183 = 26.3778 galls., or 26 galls. 3 pts.
————
154
which, divided by 4, gives 6 gallons, 4 pints, 15 oz.
Suppose the spirit to be 60 overproof,—
4062.183 {one-fourth of which is equal
then ————— = 25.388 gallons, {to 6 gallons, 2 pints,
(100 + 60) {15-1/2 oz.
This rule is founded on the following data. As a gallon of water weighs 10 lbs., it is obvious that the specific gravity of any liquid multiplied by 10 will give the weight of one gallon. The specific gravity of absolute alcohol is 0.793811; hence, the weight of
Comments (0)