The Art of Perfumery by George William Septimus Piesse (comprehension books TXT) 📖
- Author: George William Septimus Piesse
- Performer: 1425529070
Book online «The Art of Perfumery by George William Septimus Piesse (comprehension books TXT) 📖». Author George William Septimus Piesse
In practice, it is seldom necessary to proceed with the determination of the chloride of sodium and sulphate of soda, except with stirred and cocoa-nut oil soaps; certainly less of the truth is seen if, after the above determination of the fatty acids and the effective alkali, the absent per centage of water is introduced in the calculation, than if the water is reckoned, which is never completely evolved from soap, even technically prepared at 302° Fahr., and another determination made of the fatty acids or alkali en bloc the fatty acids, or even the alkaline contents.
The method here given partakes of the usual imperfections, that the fatty acids as well as the unsaponified soap are equally estimated, and the mixed hydrate or carbonate of the alkali as well as the combined alkali. The presence of the carbonate can be easily recognized by the foaming of the soap solution, upon the addition of the sulphuric acid. These imperfections, however, are of little importance.
It must be granted that the minutely correct determination of the constitution of soap must be always yielded up to those who are technically conversant with this department of chemistry, the estimation of free alkali and unchanged fat excluded in, at least, by certain ages of the soap. Further, a considerable excess of one or another ingredient soon betrays itself by a corresponding departure in the soap of the characteristic properties of a good product, and a small excess can be judged sufficiently exact from the proportion of the alkali, which, supposing soda present, should not amount to more than 13 per cent. with a pure cocoa-nut oil soap, not less than 11.5 per cent. with a tallow soap; but with palm oil and mixed soaps the one or the other limit approximates.—Journal für Praktische Chemie.
ON THE NATURAL FATS. BY DR. CHARLES LÖWIG.The fats which exist in nature can be divided into the general and the special; the former exist in almost all plants and parts of plants; the latter includes only some vegetable substances, as laurostearine, myristicine, and palmatine. The consistence of fats of the general kind depend upon the proportions of margarine, stearine, and oleine contained in them. The former preponderate in the solid fats (butter, lard, and tallow); and the latter in the fluid ones or oils. According as an oil contains oleic acid or olinic acid, it is termed a fatty or drying oil. To the class of fatty oils belong olive, almond, hazel-nut, beech, rape oils, &c.; to that of drying oils, linseed, nut, hemp, poppy, grape-seed, oils, &c.; which are used for varnishes.
In the vegetable kingdom the fats are chiefly in the seeds and in their coverings, seldom in the perispemium (poppy), and in the fleshy substance surrounding the seed (olive). The fat in the seed is mostly enclosed in cells with a proteine compound. In the animal kingdom certain parts of the body are quite filled with fat-cells, particularly under the skin (Paniculus adiposus), in the cavities of the abdomen, in the so-called omentum, in the kidneys and the tubulated canals of the bones. Fat is also enclosed in cells (fatty globules) in milk.
It is established, without a doubt, that a greater portion of the fat which exists in the animal kingdom originates from the vegetable kingdom, for it is introduced into the body cotemporaneously with the proteine compounds of that kingdom. A portion of the fat as well as wax is formed in the animal organismus, as shown by a number of observations, and in most cases it is unquestionable that the non-nitrogenous nutriments, as starch, serve for the formation of fat by a process of deoxidation; nevertheless, the formation of fat in the animal body appears only to take place when the substances containing starch enter the body simultaneously with fat.
If the fat existing in the animal body is contained in cellular tissue, its separation may be simply effected by placing the incised tissue in hot water. The cells burst and the fat collects itself on the surface of the water. If vegetable substances contain fat in large quantity, as, for example, seeds, it may be obtained by expression. The dried seeds are bruised and expressed between either cold or hot metallic plates. Olives are laid in heaps before expression; when they begin to ferment, they can be completely expressed. If animal and vegetable substances contain only a little fat, it must be extracted by ether.
In the pure condition the fats are mostly odorless and tasteless; when they possess an odor, it arises mostly from the presence of small quantities of volatile fatty acids, as butyric acid, capric acid, &c.; which becomes free through the decomposition of their oxide of glycyl combinations. This ensues by the presence of water and air through a kind of fermentation, and as it appears, by the presence of a nitrogenous substance. The fats are insoluble in water, and, with the exception of castor oil, are taken up by cold alcohol in very small quantities, however, more in proportion as they contain oleine. In boiling alcohol they are dissolved, but are, for the most part, again separated on cooling, particularly those rich in stearine. All fats are taken up by ether but those containing stearine in the smallest quantity.
Their specific gravities fluctuate between .91 and .93. When heated, fats assume a dark color, and boil between 482° and 572° Fahr., but the boiling-point continuously rises, while an uninterrupted decomposition proceeds. From oxide of glycyl ensues acroline; oleic acid affords a fatty acid, and among the decomposition products of fats containing stearine and margarine are found pure margaric acid, and, at the same time, some hydro-carbons are formed. When exposed quickly to a high temperature, fats are completely decomposed. (Oil gas.) In closed vessels the pure fats undergo no change, but, placed in thin layers in the air, the fats containing oleine and oline rapidly absorb oxygen under the strong evolution of heat, which will inflame porous bodies, as cotton wool. The purer the fats are the more quickly their oxidation results. When the fats contain slimy materials, these latter can be destroyed with a little oxide of lead and water. (Preparation for the application of varnishes.) The action of nitric acid, nitrous acid, chlorine, sulphuric acid, &c., on fats is the same as that of these bodies on the fatty acids. The fatty oils dissolve sulphur in the heat which is again partly precipitated on cooling. When sulphur is heated with fatty oils, namely, with linseed oil, it dissolves by degrees, and a thick dark mass is formed, the so-called balsam of sulphur. By raising the heat, a violent reaction ensues under the evolution of sulphuretted hydrogen, and, at the same time, an oil resembling oil of garlic volatilizes. This oil begins to boil at 160° Fahr., but its boiling-point rises continually.
PERFUMES AS PREVENTIVES OF MOULDINESS.An interesting paper on this subject has been published by Dr. Macculloch. We presume our readers are aware that mouldiness is occasioned by the growth of minute vegetables. Ink, paste, leather, and seeds, are the substances that most frequently suffer from it. The effect of cloves in preserving ink is well known; any of the essential oils answer equally well. Leather may be kept free from mould by the same substances. Thus Russian leather, which is perfumed with the tar of birch, never becomes mouldy; indeed it prevents it from occurring in other bodies. A few drops of any essential oil are sufficient also to keep books entirely free from it. For harness, oil of turpentine is recommended. Bookbinders, in general, employ alum for preserving their paste; but mould frequently forms on it. Shoemakers' resin is sometimes also used for the same purpose; but it is less effectual than oil of turpentine. The best preventives, however, are the essential oils, even in small quantity, as those of peppermint, anise, or cassia, by which paste may be kept almost any length of time; indeed, it has, in this way, been preserved for years. The paste recommended by Dr. Macculloch is made in the usual way, with flour, some brown sugar, and a little corrosive sublimate; the sugar keeping it flexible when dry, and the sublimate preventing it from fermenting, and from being attacked by insects. After it is made, a few drops of any of the essential oils are added. Paste made in this way dries when exposed to the air, and may be used merely by wetting it. If required to be kept always ready for use, it ought to be put into covered pots. Seeds may also be preserved by the essential oils; and this is of great consequence, when they are to be sent to a distance. Of course moisture must be excluded as much as possible, as the oils or ottos prevent only the bad effects of mould.
FUSEL OIL. BY W. BASTICK.This organic compound was first discovered by Scheele, as one of the distillation products of the wort obtained from the fermentation of potatoes. It has been subsequently examined by Pelletier, Dumas, Cahours, and others. It is generally now termed the hydrate of the oxide of amyl, from amyl being supposed to be its base or radical, as cyanogen is regarded to be the radical of another series of compounds.
It passes over towards the termination of the distillation process in a white turbid fluid, which consists of a watery and alcoholic solution of the fusel oil. The crude oil, consisting of about one-half of its weight of alcohol and water, may be purified, being shaken with water and redistilled, with the previous addition of chloride of calcium. When the temperature of the contents of retort reaches 296° Fahr., pure fusel oil distils over.
Fusel oil is a colorless oily fluid, which possesses at first not an unagreeable odor, but at last is very disgusting, producing oppression at the chest and exciting cough. It has a sharp hot taste, and burns with a white blue flame. It boils at 296° Fahr., and at temperature of -4° Fahr. it becomes solid, and forms crystals. Its specific gravity at 59° Fahr. is 0.8124, and its formula C10H12O2. On paper it produces a greasy stain, which disappears by heat, and when exposed to the action of the air it acquires an acid reaction. Fusel oil is slightly soluble in water, to which it imparts its odor; and soluble in all proportions in alcohol, ether, volatile and fixed oils, and acetic acid. It dissolves phosphorus, sulphur, and iodine without any noticeable change, and also mixes with caustic soda and potash. It rapidly absorbs hydrochloric acid, with the disengagement of heat. When mixed with concentrated sulphuric acid, the mixture becomes of a violet-red color, and bisulphate of amyloxide is formed. Nitric acid and chlorine decompose it. By its distillation with anhydrous phosphoric acid, a fluid, oily combination of hydrogen and carbon results. By oxidation with bichromate of potash and sulphuric acid, fusel oil yields valerianic acid, which is used in medicine, and apple-oil, employed as a flavoring ingredient in confectionery.
ESSENCE OF PINE-APPLE. BY W. BASTICK.The above essence is, as already known, butyric ether more or less diluted with alcohol; to obtain which pure, on the large scale and economically, the following process is recommended:—
Dissolve 6 lbs. of sugar and half an ounce of tartaric acid, in 26 lbs. of boiling water. Let the solution stand for several days; then add 8 ounces of putrid cheese broken up with 3 lbs. of skimmed and curdled sour milk and 3 lbs. of levigated chalk. The mixture should be kept and stirred daily in a warm place, at the temperature of about 92° Fahr., as long as gas is evolved, which is generally the case for five or six weeks.
The liquid thus obtained, is mixed with an equal volume of cold water, and 8
Comments (0)