Literary Collections
Read books online » Literary Collections » The Art of Perfumery by George William Septimus Piesse (comprehension books TXT) 📖

Book online «The Art of Perfumery by George William Septimus Piesse (comprehension books TXT) 📖». Author George William Septimus Piesse



1 ... 24 25 26 27 28 29 30 31 32 ... 35
Go to page:
one gallon will be 7.93811 lbs., and its strength is estimated at 75.25 overproof.

4 equivalents of alcohol = 46 × 4 = 184,

and

23.17936 gallons × 7.93811 lbs. per gallon, also = 184.0003094.

Hence it appears that 23.17936 gallons of absolute alcohol are equal to 4 equivalents. By adding the overproof per centage (75.25) to 100, and multiplying by the quantity (23.17936 gallons) we get the constant number 4062.183.

The rule might have been calculated so as to show at once the equivalent, without dividing by 4; but it would have required several more places of decimals; it will give the required quantity to a fraction of a fluid drachm.

PURIFICATION OF SPIRITS BY FILTRATION. BY MR. W. SCHAEFFER.

Instead of resorting to repeated distillations for effecting the purification of spirits, Mr. Schaeffer proposes the use of a filter. In a suitable vessel, the form of which is not material, a filtering bed is constructed in the following manner:—On a false perforated bottom, covered with woollen or other fabric, a layer of about six inches of well-washed and very clean river sand is placed; next about twelve inches of granular charcoal, preferring that made from birch; on the charcoal is placed a layer of about one inch of wheat, boiled to such an extent as to cause it to swell as large as possible, and so that it will readily crush between the fingers. Above this is laid about ten inches of charcoal, then about one inch of broken oyster shells, and then about two inches more of charcoal, over which is placed a layer of woollen or other fabric, and over it a perforated partition, on to which the spirit to be filtered is poured; the filter is kept covered, and in order that the spirit may flow freely into the compartment of the filter below the filtering materials, a tube connects such lower compartment with the upper compartment of the filter, so that the air may pass freely between the lower and upper compartments of the filter. On each, of the several strata above described, it is desirable to place a layer of filtering paper.

The charcoal suitable for the above purpose is not such as is obtained in the ordinary mode of preparation. It is placed in a retort or oven, and heated to a red heat until the blue flame has passed off, and the flame become red. The charcoal is then cooled in water, in which carbonate of potash has previously been dissolved, in the proportion of two ounces of carbonate to fifty gallons of water. The charcoal being deprived of the water is then reduced to a granular state, in which condition it is ready for use.

ON ESSENTIAL OIL OR OTTO OF LEMONS. BY JOHN S. COBB.

(Read before the Chemical Discussion Society.)

I have recently made some experiments with oil of lemons, of which the following is a short account:—

Being constantly annoyed by the deposit and alteration in my essence of lemons, I have tried various methods of remedying the inconvenience.

I first tried redistilling it, but besides the loss consequent on distilling small quantities, the flavor is thereby impaired. As the oil became brighter when heated, I anticipated that all its precipitable matter would be thrown down at a low temperature, and I applied a freezing mixture, keeping the oil at zero for some hours. No such change, however, took place.

The plan which I ultimately decided upon as the best which I had arrived at, was to shake up the oil with a little boiling water, and to leave the water in the bottle; a mucilaginous preparation forms on the top of the water, and acquires a certain tenacity, so that the oil may be poured off to nearly the last, without disturbing the deposit. Perhaps cold water would answer equally well, were it carefully agitated with the oil and allowed some time to settle. A consideration of its origin and constitution, indeed, strengthens this opinion; for although lemon otto is obtained both by distillation and expression, that which is usually found in commerce is prepared by removing the "flavedo" of lemons with a rasp, and afterwards expressing it in a hair sack, allowing the filtrate to stand, that it may deposit some of its impurities, decanting and filtering. Thus obtained it still contains a certain amount of mucilaginous matter, which undergoes spontaneous decomposition, and thus (acting, in short, as a ferment) accelerates a similar change in the oil itself. If this view of its decomposition be a correct one, we evidently, in removing this matter by means of the water, get rid of a great source of alteration, and attain the same result as we should by distillation, without its waste or deterioration in flavor.

I am, however, aware that some consider the deposit to be modified resin.[H] Some curious experiments of Saussure have shown that volatile oils absorb oxygen immediately they have been drawn from the plant, and are partially converted into a resin, which remains dissolved in the remainder of the essence.

He remarked that this property of absorbing oxygen gradually increases, until a maximum is attained, and again diminishes after a certain lapse of time. In the oil of lavender this maximum remained only seven days, during each of which it absorbed seven times its volume of oxygen. In the oil of lemons the maximum was not attained until at the end of a month; it then lasted twenty-six days; during each of which it absorbed twice its volume of oxygen. The oil of turpentine did not attain the maximum for five months, it then remained for one month, during which time it absorbed daily its own volume of oxygen.

It is the resin formed by the absorption of oxygen, and remaining dissolved in the essence, which destroys its original flavor. The oil of lemons presents a very great analogy with that of oil of turpentine, so far as regards its transformations, and its power of rotating a ray of polarized light. Authorities differ as regards this latter property. Pereira states that the oil of turpentine obtained by distillation with water, from American turpentine, has a molecular power of right-handed rotation, while the French oil of turpentine had a left-handed rotation. Oil of lemons rotates a ray of light to the right, but in France a distilled oil of lemons, sold as scouring drops for removing spots of grease, possesses quite the opposite power of rotation, and has lost all the original peculiar flavor of the oil. Oil of lemons combines with hydrochloric acid to form an artificial camphor, just in the same manner as does oil of turpentine, but its atom is only one half that of the oil of turpentine. The artificial camphor of oil of lemons is represented by the formula, C10H8HCl; the artificial camphor of oil of turpentine by C20H16HCl.

According to M. Biot, the camphor formed by the oil of lemons does not exercise any action on polarized light, whilst the oil of lemons itself rotates a ray to the right. The camphor from oil of turpentine, on the contrary, does exercise on the polarized ray the same power as the oil possessed while in its isolated state, of rotating to the left. These molecular properties establish an essential difference between the oils of turpentine and lemons, and may serve to detect adulteration and fraud. It is also a curious fact, that from the decomposition of these artificial camphors by lime, volatile oils may be obtained by distillation, isomeric with the original oils from which the camphors were formed; but in neither case has the new product any action on polarized light.

In conclusion, I would recommend that this oil, as well as all other essential oils, be kept in a cool, dark place, where no very great changes of temperature occur.

BENZOIC ACID, AND TESTS FOR ITS PURITY. BY W. BASTICK.

Dr. Mohr's process for obtaining benzoic acid, which is adopted by the Prussian Pharmacopœia, unquestionably has the reputation of being the best. According to this process, coarsely-powdered gum benzoin is to be strewed on the flat bottom of a round iron pot which has a diameter of nine inches, and a height of about two inches. On the surface of the pot is spread a piece of filtering paper, which is fastened to its rim by starch paste. A cylinder of very thick paper is attached by means of a string to the top of the iron pot. Heat is then applied by placing the pot on a plate covered with sand, over the mouth of a furnace. It must remain exposed to a gentle fire from four to six hours. Mohr usually obtains about an ounce and a half of benzoic acid from twelve ounces of gum benzoin by the first sublimation. As the gum is not exhausted by the first operation, it may be bruised when cold and again submitted to the action of heat, when a fresh portion of benzoic acid will sublime from it. This acid thus obtained, is not perfectly pure and white, and Mohr states that it is a question, in a medicinal and perfumery point of view, whether it is so valuable when perfectly pure, as when it contains a small portion of a fragrant volatile oil, which rises with it from the gum in the process of sublimation.

The London Pharmacopœia directs that it shall be prepared by sublimation, and does not prescribe that it shall be free from this oil, to which it principally owes its agreeable odor.

By the second sublimation the whole of the benzoic acid is not volatilized. What remains in the resin may be separated by boiling it with caustic lime, and precipitating the acid from the resulting benzoate of lime with hydrochloric acid. Benzoic acid can be obtained also in the wet way, and the resin yields a greater product in this process than in the former; yet it has a less perfumery value, because it is free from the volatile oil which, as above stated, gives it its peculiar odor. The wet method devised by Scheele is as follows:—Make one ounce of freshly-burnt lime into a milk with from four to six ounces of hot water. To the milk of lime, four ounces of powdered benzoin and thirty ounces of water are to be added, and the mixture boiled for half an hour, and stirred during this operation, and afterwards strained through linen. The residue must be a second time boiled with twenty ounces of water and strained, and a third time with ten ounces; the fluid products must be mixed and evaporated to one-fourth of their volume, and sufficient hydrochloric acid added to render them slightly acid. When quite cold, the crystals are to be separated from the fluid by means of a linen strainer, upon which they are to be washed with cold water, and pressed, and then dissolved in hot distilled water, from which the crystals separate on cooling. When hydrochloric acid is added to a cold concentrated solution of the salts of benzoic acid, it is precipitated as a white powder. If the solution of the salts of this acid is too dilute and warm, none or only a portion of the benzoic acid will be separated. However, the weaker the solution is, and the more slowly it is cooled, the larger will be the crystals of this acid. In the preparation of this acid in the wet way, lime is to be preferred to every other base, because it forms insoluble combinations with the resinous constituents of the benzoin, and because it prevents the gum-resin from conglomerating into an adhesive mass, and also because an excess of this base is but slightly soluble.

Stoltze has recommended a method by which all the acid can be removed from the benzoin:—The resin is to be dissolved in spirit, to which is to be added a watery solution of carbonate of soda, decomposed previously by

1 ... 24 25 26 27 28 29 30 31 32 ... 35
Go to page:

Free ebook «The Art of Perfumery by George William Septimus Piesse (comprehension books TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment