Science
Read books online » Science » An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖

Book online «An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖». Author Henry P. Talbot



1 ... 7 8 9 10 11 12 13 14 15 ... 34
Go to page:
sieve, but are retained by one of 20 meshes to the inch, are most satisfactory. The zinc can be amalgamated by stirring or shaking it in a mixture of 25 cc. of normal mercuric chloride solution, 25 cc. of hydrochloric acid (sp. gr. 1.12) and 250 cc. of water for two minutes. The solution should then be poured off and the zinc thoroughly washed. It is then ready for bottling and preservation under water. A small quantity of glass wool is placed in the neck of the funnel to hold back foreign material when the reductor is in use.] STANDARDIZATION

PROCEDURE.—Weigh out into Erlenmeyer flasks two portions of iron wire of about 0.25 gram each. Dissolve these in hot dilute sulphuric acid (5 cc. of concentrated acid and 100 cc. of water), using a covered flask to avoid loss by spattering. Boil the solution for two or three minutes after the iron has dissolved to remove any volatile hydrocarbons. Meanwhile prepare the reductor for use as follows: Connect the vacuum bottle with the suction pump and pour into the funnel at the top warm, dilute sulphuric acid, prepared by adding 5 cc. of concentrated sulphuric acid to 100 cc. of distilled water. See that the stopcock (C) is open far enough to allow the acid to run through slowly. Continue to pour in acid until 200 cc. have passed through, then close the stopcock !while a small quantity of liquid is still left in the funnel!. Discard the filtrate, and again pass through 100 cc. of the warm, dilute acid. Test this with the permanganate solution. A single drop should color it permanently; if it does not, repeat the washing, until assured that the zinc is not contaminated with appreciable quantities of reducing substances. Be sure that no air enters the reductor (Note 1).

Pour the iron solution while hot (but not boiling) through the reductor at a rate not exceeding 50 cc. per minute (Notes 2 and 3). Wash out the beaker with dilute sulphuric acid, and follow the iron solution without interruption with 175 cc. of the warm acid and finally with 75 cc. of distilled water, leaving the funnel partially filled. Remove the filter bottle and cool the solution quickly under the water tap (Note 4), avoiding unnecessary exposure to the oxygen of the air. Add 10 cc. of dilute sulphuric acid and titrate to a faint pink with the permanganate solution, adding it directly to the contents of the vacuum flask. Should the end-point be overstepped, the ferrous sulphate solution may be added.

From the volume of the solution required to oxidize the iron in the wire, calculate the relation to the normal of the permanganate solution. The duplicate results should be concordant within two parts in one thousand.

[Note 1: The funnel of the reductor must never be allowed to empty. If it is left partially filled with water the reductor is ready for subsequent use after a very little washing; but a preliminary test is always necessary to safeguard against error.

If more than a small drop of permanganate solution is required to color 100 cc. of the dilute acid after the reductor is well washed, an allowance must be made for the iron in the zinc. !Great care! must be used to prevent the access of air to the reductor after it has been washed out ready for use. If air enters, hydrogen peroxide forms, which reacts with the permanganate, and the results are worthless.]

[Note 2: The iron is reduced to the ferrous condition by contact with the zinc. The active agent may be considered to be !nascent! hydrogen, and it must be borne in mind that the visible bubbles are produced by molecular hydrogen, which is without appreciable effect upon ferric iron.

The rate at which the iron solution passes through the zinc should not exceed that prescribed, but the rate may be increased somewhat when the wash-water is added. It is well to allow the iron solution to run nearly, but not entirely, out of the funnel before the wash-water is added. If it is necessary to interrupt the process, the complete emptying of the funnel can always be avoided by closing the stopcock.

It is also possible to reduce the iron by treatment with zinc in a flask from which air is excluded. The zinc must be present in excess of the quantity necessary to reduce the iron and is finally completely dissolved. This method is, however, less convenient and more tedious than the use of the reductor.]

[Note 3: The dilute sulphuric acid for washing must be warmed ready for use before the reduction of the iron begins, and it is of the first importance that the volume of acid and of wash-water should be measured, and the volume used should always be the same in the standardizations and all subsequent analyses.]

[Note 4: The end-point is more permanent in cold than hot solutions, possibly because of a slight action of the permanganate upon the manganous sulphate formed during titration. If the solution turns brown, it is an evidence of insufficient acid, and more should be immediately added. The results are likely to be less accurate in this case, however, as a consequence of secondary reactions between the ferrous iron and the manganese dioxide thrown down. It is wiser to discard such results and repeat the process.]

[Note 5: The potassium permanganate may, of course, be diluted and brought to an exactly 0.1 N solution from the data here obtained. The percentage of iron in the iron wire must be taken into account in all calculations.]

!Method B!

!Oxalate Standards!

PROCEDURE.—Weigh out two portions of pure sodium oxalate of 0.25-0.3 gram each into beakers of about 600 cc. capacity. Add about 400 cc. of boiling water and 20 cc. of manganous sulphate solution (Note 1). When the solution of the oxalate is complete, heat the liquid, if necessary, until near its boiling point (70-90°C.) and run in the standard permanganate solution drop by drop from a burette, stirring constantly until an end-point is reached (Note 2). Make a blank test with 20 cc. of manganous sulphate solution and a volume of distilled water equal to that of the titrated solution to determine the volume of the permanganate solution required to produce a very slight pink. Deduct this volume from the amount of permanganate solution used in the titration.

From the data obtained, calculate the relation of the permanganate solution to the normal. The reaction involved is:

5Na_{2}C_{2}O_{4} + 2KMnO_{4} + 8H_{2}SO_{4} —> 5Na_{2}SO_{4} + K_{2}SO_{4} + 2MnSO_{4} + 10CO_{2} + 8H_{2}O

[Note 1: The manganous sulphate titrating solution is made by dissolving 20 grams of MnSO_{4} in 200 cubic centimeters of water and adding 40 cc. of concentrated sulphuric acid (sp. gr. 1.84) and 40 cc. or phosphoric acid (85%).]

[Note 2: The reaction between oxalates and permanganates takes place quantitatively only in hot acid solutions. The temperatures must not fall below 70°C.]

DETERMINATION OF IRON IN LIMONITE

!Method A!

The procedures, as here prescribed, are applicable to iron ores in general, provided these ores contain no constituents which are reduced by zinc or stannous chloride and reoxidized by permanganates. Many iron ores contain titanium, and this element among others does interfere with the determination of iron by the process described. If, however, the solutions of such ores are treated with sulphureted hydrogen or sulphurous acid, instead of zinc or stannous chloride to reduce the iron, and the excess reducing agent removed by boiling, an accurate determination of the iron can be made.

PROCEDURE.—Grind the mineral to a fine powder. Weigh out two portions of about 0.5 gram each into small porcelain crucibles. Roast the ore at dull redness for ten minutes (Note 1), allow the crucibles to cool, and place them and their contents in casseroles containing 30 cc. of dilute hydrochloric acid (sp. gr. 1.12).

Proceed with the solution of the ore, and the treatment of the residue, if necessary, exactly as described for the bichromate process on page 56. When solution is complete, add 6 cc. of concentrated sulphuric acid to each casserole, and evaporate on the steam bath until the solution is nearly colorless (Note 2). Cover the casseroles and heat over the flame of the burner, holding the casserole in the hand and rotating it slowly to hasten evaporation and prevent spattering, until the heavy white fumes of sulphuric anhydride are freely evolved (Note 3). Cool the casseroles, add 100 cc. of water (measured), and boil gently until the ferric sulphate is dissolved; pour the warm solution through the reductor which has been previously washed; proceed as described under standardization, taking pains to use the same volume and strength of acid and the same volume of wash-water as there prescribed, and titrate with the permanganate solution in the reductor flask, using the ferrous sulphate solution if the end-point should be overstepped.

From the corrected volume of permanganate solution used, calculate the percentage of iron (Fe) in the limonite.

[Note 1: The preliminary roasting is usually necessary because, even though the sulphuric acid would subsequently char the carbonaceous matter, certain nitrogenous bodies are not thereby rendered insoluble in the acid, and would be oxidized by the permanganate.]

[Note 2: The temperature of the steam bath is not sufficient to volatilize sulphuric acid. Solutions may, therefore, be left to evaporate overnight without danger of evaporation to dryness.]

[Note 3: The hydrochloric acid, both free and combined, is displaced by the less volatile sulphuric acid at its boiling point. Ferric sulphate separates at this point, since there is no water to hold it in solution and care is required to prevent bumping. The ferric sulphate usually has a silky appearance and is easily distinguished from the flocculent silica which often remains undissolved.]

!Zimmermann-Reinhardt Procedure!

!Method (B)!

PROCEDURE.—Grind the mineral to a fine powder. Weigh out two portions of about 0.5 gram each into small porcelain crucibles. Proceed with the solution of the ore, treat the residue, if necessary, and reduce the iron by the addition of stannous chloride, followed by mercuric chloride, as described for the bichromate process on page 56. Dilute the solution to about 400 cc. with cold water, add 10 cc. of the manganous sulphate titrating solution (Note 1, page 68) and titrate with the standard potassium permanganate solution to a faint pink (Note 1).

From the standardization data already obtained calculate the percentage of iron (Fe) in the limonite.

[Note 1: It has already been noted that hydrochloric acid reacts slowly in cold solutions with potassium permanganate. It is, however, possible to obtain a satisfactory, although somewhat fugitive end-point in the presence of manganous sulphate and phosphoric acid. The explanation of the part played by these reagents is somewhat obscure as yet. It is possible that an intermediate manganic compound is formed which reacts rapidly with the ferrous compounds—thus in effect catalyzing the oxidizing process.

While an excess of hydrochloric acid is necessary for the successful reduction of the iron by stannous chloride, too large an amount should be avoided in order to lessen the chance of reduction of the permanganate by the acid during titration.]

DETERMINATION OF THE OXIDIZING POWER OF PYROLUSITE INDIRECT OXIDATION

Pyrolusite, when pure, consists of manganese dioxide. Its value as an oxidizing agent, and for the production of chlorine, depends upon the percentage of MnO_{2} in the sample. This percentage is determined by an indirect method, in which the manganese dioxide is reduced and dissolved by an excess of ferrous sulphate or oxalic acid in the presence of sulphuric acid, and the unused excess determined by titration with standard permanganate solution.

PROCEDURE.—Grind the mineral in an agate mortar until no grit whatever can be detected under the pestle (Note 1). Transfer it to a stoppered weighing-tube, and weigh out two portions of about 0.5 gram into beakers (400-500 cc.) Read Note 2, and then calculate in each case the weight of oxalic acid (H_{2}C_{2}O_{4}.2H_{2}O) required to react with the weights of pyrolusite taken. The reaction involved is

MnO_{2} + H_{2}C_{2}O_{4}(2H_{2}O) + H_{2}SO_{4} —> MnSO_{4} + 2CO_{2} + 4H_{2}O.

Weigh out about 0.2 gram in excess of this quantity of !pure! oxalic acid into the corresponding beakers, weighing the acid accurately and recording the weight in the notebook. Pour into each beaker 25 cc. of water and 50 cc. of dilute sulphuric acid (1:5), cover and warm the beaker and its contents gently until the evolution of carbon dioxide ceases (Note 3). If a residue remains which is sufficiently colored to obscure the end-reaction of the permanganate, it must be removed by filtration.

Finally, dilute the solution to 200-300 cc., heat the solution to a temperature just below boiling, add 15 cc. of a manganese sulphate solution and while hot, titrate for the excess of the oxalic acid with standard permanganate solution (Notes 4 and 5).

From the corrected volume of the

1 ... 7 8 9 10 11 12 13 14 15 ... 34
Go to page:

Free ebook «An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment