Science
Read books online » Science » An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖

Book online «An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖». Author Henry P. Talbot



1 ... 9 10 11 12 13 14 15 16 17 ... 34
Go to page:
deep blue is replaced by a light bluish green, or a brown stain appears on the sides of the flask (Note 2). Add 10 cc. of strong acetic acid (sp. gr. 1.04), cool under the water tap, and add a solution of potassium iodide (Note 3) containing about 3 grams of the salt, and titrate with thiosulphate solution until the color of the liberated iodine is nearly destroyed. Then add 1-2 cc. of freshly prepared starch solution, and add thiosulphate solution, drop by drop, until the blue color is discharged.

From the data obtained, including the "blank test" of the iodide, calculate the relation of the thiosulphate solution to the normal.

[Note 1: While copper wire of commerce is not absolutely pure, the requirements for its use as a conductor of electricity are such that the impurities constitute only a few hundredths of one per cent and are negligible for analytical purposes.]

[Note 2: Ammonia neutralizes the free nitric acid. It should be added in slight excess only, since the excess must be removed by boiling, which is tedious. If too much ammonia is present when acetic acid is added, the resulting ammonium acetate is hydrolyzed, and the ammonium hydroxide reacts with the iodine set free.]

[Note 3: A considerable excess of potassium iodide is necessary for the prompt liberation of iodine. While a large excess will do no harm, the cost of this reagent is so great that waste should be avoided.]

!Method C!

PROCEDURE.—Weigh out into 500 cc. beakers two portions of 0.175-0.200 gram each of pure arsenious oxide. Dissolve each of these in 10 cc. of sodium hydroxide solution, with stirring. Dilute the solutions to 150 cc. and add dilute hydrochloric acid until the solutions contain a few drops in excess, and finally add to each a concentrated solution of 5 grams of pure sodium bicarbonate (NaHCO_{3}) in water. Cover the beakers before adding the bicarbonate, to avoid loss. Add the starch solution and titrate with the iodine to the appearance of the blue of the iodo-starch, taking care not to pass the end-point by more than a few drops (Note 1).

From the corrected volume of the iodine solution used to oxidize the arsenious oxide, calculate its relation to the normal. From the ratio between the solutions, calculate the similar value for the thiosulphate solution.

[Note 1: Arsenious oxide dissolves more readily in caustic alkali than in a bicarbonate solution, but the presence of caustic alkali during the titration is not admissible. It is therefore destroyed by the addition of acid, and the solution is then made neutral with the solution of bicarbonate, part of which reacts with the acid, the excess remaining in solution.

The reaction during titration is the following:

Na_{3}AsO_{3} + I_{2} + 2NaHCO_{3} —> Na_{3}AsO_{4} + 2NaI + 2CO_{2}
+ H_{2}O

As the reaction between sodium thiosulphate and iodine is not always free from secondary reactions in the presence of even the weakly alkaline bicarbonate, it is best to avoid the addition of any considerable excess of iodine. Should the end-point be passed by a few drops, the thiosulphate may be used to correct it.]

DETERMINATION OF COPPER IN ORES

Copper ores vary widely in composition from the nearly pure copper minerals, such as malachite and copper sulphide, to very low grade materials which contain such impurities as silica, lead, iron, silver, sulphur, arsenic, and antimony. In nearly all varieties there will be found a siliceous residue insoluble in acids. The method here given, which is a modification of that described by A.H. Low (!J. Am. Chem. Soc.! (1902), 24, 1082), provides for the extraction of the copper from commonly occurring ores, and for the presence of their common impurities. For practice analyses it is advisable to select an ore of a fair degree of purity.

PROCEDURE.— Weigh out two portions of about 0.5 gram each of the ore (which should be ground until no grit is detected) into 250 cc. Erlenmeyer flasks or small beakers. Add 10 cc. of concentrated nitric acid (sp. gr. 1.42) and heat very gently until the ore is decomposed and the acid evaporated nearly to dryness (Note 1). Add 5 cc. of concentrated hydrochloric acid (sp. gr. 1.2) and warm gently. Then add about 7 cc. of concentrated sulphuric acid (sp. gr. 1.84) and evaporate over a free flame until the sulphuric acid fumes freely (Note 2). It has then displaced nitric and hydrochloric acid from their compounds.

Cool the flask or beaker, add 25 cc. of water, heat the solution to boiling, and boil for two minutes. Filter to remove insoluble sulphates, silica and any silver that may have been precipitated as silver chloride, and receive the filtrate in a small beaker, washing the precipitate and filter paper with warm water until the filtrate and washings amount to 75 cc. Bend a strip of aluminium foil (5 cm. x 12 cm.) into triangular form and place it on edge in the beaker. Cover the beaker and boil the solution (being careful to avoid loss of liquid by spattering) for ten minutes, but do not evaporate to small volume.

Wash the cover glass and sides of the beaker. The copper should now be in the form of a precipitate at the bottom of the beaker or adhering loosely to the aluminium sheet. Remove the sheet, wash it carefully with hydrogen sulphide water and place it in a small beaker. Decant the solution through a filter, wash the precipitated copper twice by decantation with hydrogen sulphide water, and finally transfer the copper to the filter paper, where it is again washed thoroughly, being careful at all times to keep the precipitated copper covered with the wash water. Remove and discard the filtrate and place an Erlenmeyer flask under the funnel. Pour 15 cc. of dilute nitric acid (sp. gr. 1.20) over the aluminium foil in the beaker, thus dissolving any adhering copper. Wash the foil with hot water and remove it. Warm this nitric acid solution and pour it slowly through the filter paper, thereby dissolving the copper on the paper, receiving the acid solution in the Erlenmeyer flask. Before washing the paper, pour 5 cc. of saturated bromine water (Note 3) through it and finally wash the paper carefully with hot water and transfer any particles of copper which may be left on it to the Erlenmeyer flask. Boil to expel the bromine. Add concentrated ammonia drop by drop until the appearance of a deep blue coloration indicates an excess. Boil until the deep blue is displaced by a light bluish green coloration, or until brown stains form on the sides of the flask. Add 10 cc. of strong acetic acid (Note 4) and cool under the water tap. Add a solution containing about 3 grams of potassium iodide, as in the standardization, and titrate with thiosulphate solution until the yellow of the liberated iodine is nearly discharged. Add 1-2 cc. of freshly prepared starch solution and titrate to the disappearance of the blue color.

From the data obtained, calculate the percentage of copper (Cu) in the ore.

[Note 1: Nitric acid, because of its oxidizing power, is used as a solvent for the sulphide ores. As a strong acid it will also dissolve the copper from carbonate ores. The hydrochloric acid is added to dissolve oxides of iron and to precipitate silver and lead. The sulphuric acid displaces the other acids, leaving a solution containing sulphates only. It also, by its dehydrating action, renders silica from silicates insoluble.]

[Note 2: Unless proper precautions are taken to insure the correct concentrations of acid the copper will not precipitate quantitatively on the aluminium foil; hence care must be taken to follow directions carefully at this point. Lead and silver have been almost completely removed as sulphate and chloride respectively, or they too would be precipitated on the aluminium. Bismuth, though precipitated on aluminium, has no effect on the analysis. Arsenic and antimony precipitate on aluminium and would interfere with the titration if allowed to remain in the lower state of oxidation.]

[Note 3: Bromine is added to oxidize arsenious and antimonious compounds from the original sample, and to oxidize nitrous acid formed by the action of nitric acid on copper and copper sulphide.]

[Note 4: This reaction can be carried out in the presence of sulphuric and hydrochloric acids as well as acetic acid, but in the presence of these strong acids arsenic and antimonic acids may react with the hydriodic acid produced with the liberation of free iodine, thereby reversing the process and introducing an error.]

DETERMINATION OF ANTIMONY IN STIBNITE

Stibnite is native antimony sulphide. Nearly pure samples of this mineral are easily obtainable and should be used for practice, since many impurities, notably iron, seriously interfere with the accurate determination of the antimony by iodometric methods. It is, moreover, essential that the directions with respect to amounts of reagents employed and concentration of solutions should be followed closely.

PROCEDURE.—Grind the mineral with great care, and weigh out two portions of 0.35-0.40 gram into small, dry beakers (100 cc.). Cover the beakers and pour over the stibnite 5 cc. of concentrated hydrochloric acid (sp. gr. 1.20) and warm gently on the water bath (Note 1). When the residue is white, add to each beaker 2 grams of powdered tartaric acid (Note 2). Warm the solution on the water bath for ten minutes longer, dilute the solution very cautiously by adding water in portions of 5 cc., stopping if the solution turns red. It is possible that no coloration will appear, in which case cautiously continue the dilution to 125 cc. If a red precipitate or coloration does appear, warm the solution until it is colorless, and again dilute cautiously to a total volume of 125 cc. and boil for a minute (Note 3).

If a white precipitate of the oxychloride separates during dilution (which should not occur if the directions are followed), it is best to discard the determination and to start anew.

Carefully neutralize most of the acid with ammonium hydroxide solution (sp. gr. 0.96), but leave it distinctly acid (Note 4). Dissolve 3 grams of sodium bicarbonate in 200 cc. of water in a 500 cc. beaker, and pour the cold solution of the antimony chloride into this, avoiding loss by effervescence. Make sure that the solution contains an excess of the bicarbonate, and then add 1 cc. or 2 cc. of starch solution and titrate with iodine solution to the appearance of the blue, avoiding excess (Notes 5 and 6).

From the corrected volume of the iodine solution required to oxidize the antimony, calculate the percentage of antimony (Sb) in the stibnite.

[Note 1: Antimony chloride is volatile with steam from its concentrated solutions; hence these solutions must not be boiled until they have been diluted.]

[Note 2: Antimony salts, such as the chloride, are readily hydrolyzed, and compounds such as SbOCl are formed which are often relatively insoluble; but in the presence of tartaric acid compounds with complex ions are formed, and these are soluble. An excess of hydrochloric acid also prevents precipitation of the oxychloride because the H^{+} ions from the acid lessen the dissociation of the water and thus prevent any considerable hydrolysis.]

[Note 3: The action of hydrochloric acid upon the sulphide sets free sulphureted hydrogen, a part of which is held in solution by the acid. This is usually expelled by the heating upon the water bath; but if it is not wholly driven out, a point is reached during dilution at which the antimony sulphide, being no longer held in solution by the acid, separates. If the dilution is immediately stopped and the solution warmed, this sulphide is again brought into solution and at the same time more of the sulphureted hydrogen is expelled. This procedure must be continued until the sulphureted hydrogen is all removed, since it reacts with iodine. If no precipitation of the sulphide occurs, it is an indication that the sulphureted hydrogen was all expelled on solution of the stibnite.]

[Note 4: Ammonium hydroxide is added to neutralize most of the acid, thus lessening the amount of sodium bicarbonate to be added. The ammonia should not neutralize all of the acid.]

[Note 5: The reaction which takes place during titration may be expressed thus:

Na_{3}SbO_{3} + 2NaHCO_{3} + I_{2} —> Na_{3}SbO_{4} + 2NaI + H_{2}O + 2CO_{2}.]

[Note 6: If the end-point is not permanent, that is, if the blue of the iodo-starch is discharged after standing a few moments, the cause may be an insufficient quantity of sodium bicarbonate, leaving the solution slightly acid, or a very slight precipitation of an antimony compound which is slowly acted upon by the iodine when the latter is momentarily present in excess. In either case it is better to discard the analysis and to repeat the process, using greater care in the amounts of reagents employed.]

CHLORIMETRY

The processes included under the

1 ... 9 10 11 12 13 14 15 16 17 ... 34
Go to page:

Free ebook «An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment