Science
Read books online » Science » An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖

Book online «An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖». Author Henry P. Talbot



1 ... 15 16 17 18 19 20 21 22 23 ... 34
Go to page:
yellow precipitate. The addition of 75 cc. of ammonium molybdate solution insures the presence of a liberal excess of the reagent, but the filtrate should be tested as in all quantitative procedures.

The precipitation is probably complete in many cases in less than twelve hours; but it is better, when practicable, to allow the solution to stand for this length of time. Vigorous shaking or stirring promotes the separation of the precipitate.]

[Note 6: The composition of the "yellow precipitate" undoubtedly varies slightly with varying conditions at the time of its formation. Its composition may probably fairly be represented by the formula, (NH_{4}){3}PO{4}.12MoO_{3}.H_{2}O, when precipitated under the conditions prescribed in the procedure. Whatever other variations may occur in its composition, the ratio of 12 MoO_{3}:1 P seems to hold, and this fact is utilized in volumetric processes for the determination of phosphorus, in which the molybdenum is reduced to a lower oxide and reoxidized by a standard solution of potassium permanganate. In principle, the procedure is comparable with that described for the determination of iron by permanganate.]

PRECIPITATION OF MAGNESIUM AMMONIUM PHOSPHATE

PROCEDURE.—Dissolve the precipitate of phosphomolybdate upon the filter by pouring through it dilute aqueous ammonia (one volume of dilute ammonia (sp. gr. 0.96) and three volumes of water, which should be carefully measured), and receive the solution in the beaker containing the bulk of the precipitate. The total volume of nitrate and washings should not much exceed 100 cc. Acidify the solution with dilute hydrochloric acid, and heat it nearly to boiling. Calculate the volume of magnesium ammonium chloride solution ("magnesia mixture") required to precipitate the phosphoric acid, assuming 40 per cent P_{2}O_{5} in the apatite. Measure out about 5 cc. in excess of this amount, and pour it into the acid solution. Then add slowly dilute ammonium hydroxide (1 volume of strong ammonia (sp. gr. 0.90) and 9 volumes of water), stirring constantly until a precipitate forms. Then add a volume of filtered, concentrated ammonia (sp. gr. 0.90) equal to one third of the volume of liquid in the beaker (Note 1). Allow the whole to cool. The precipitated magnesium ammonium phosphate should then be definitely crystalline in appearance (Note 2). (If it is desired to hasten the precipitation, the solution may be cooled, first in cold and then in ice-water, and stirred !constantly! for half an hour, when precipitation will usually be complete.)

Decant the clear liquid through a filter, and transfer the precipitate to the filter, using as wash-water a mixture of one volume of concentrated ammonia and three volumes of water. It is not necessary to clean the beaker completely or to wash the precipitate thoroughly at this point, as it is necessary to purify it by reprecipitation.

[Note 1: Magnesium ammonium phosphate is not a wholly insoluble substance, even under the most favorable analytical conditions. It is least soluble in a liquid containing one fourth of its volume of concentrated aqueous ammonia (sp. gr. 0.90) and this proportion should be carefully maintained as prescribed in the procedure. On account of this slight solubility the volume of solutions should be kept as small as possible and the amount of wash-water limited to that absolutely required.

A large excess of the magnesium solution tends both to throw out magnesium hydroxide (shown by a persistently flocculent precipitate) and to cause the phosphate to carry down molybdic acid. The tendency of the magnesium precipitate to carry down molybdic acid is also increased if the solution is too concentrated. The volume should not be less than 90 cc., nor more than 125 cc., at the time of the first precipitation with the magnesia mixture.]

[Note 2: The magnesium ammonium phosphate should be perfectly crystalline, and will be so if the directions are followed. The slow addition of the reagent is essential, and the stirring not less so. Stirring promotes the separation of the precipitate and the formation of larger crystals, and may therefore be substituted for digestion in the cold. The stirring-rod must not be allowed to scratch the glass, as the crystals adhere to such scratches and are removed with difficulty.]

REPRECIPITATION AND IGNITION OF MAGNESIUM AMMONIUM PHOSPHATE

A single precipitation of the magnesium compound in the presence of molybdenum compounds rarely yields a pure product. The molybdenum can be removed by solution of the precipitate in acid and precipitation of the molybdenum by sulphureted hydrogen, after which the magnesium precipitate may be again thrown down. It is usually more satisfactory to dissolve the magnesium precipitate and reprecipitate the phosphate as magnesium ammonium phosphate as described below.

PROCEDURE.—Dissolve the precipitate from the filter in a little dilute hydrochloric acid (sp. gr. 1.12), allowing the acid solution to run into the beaker in which the original precipitation was made (Note 1). Wash the filter with water until the wash-water shows no test for chlorides, but avoid an unnecessary amount of wash-water. Add to the solution 2 cc. (not more) of magnesia mixture, and then dilute ammonium hydroxide solution (sp. gr. 0.96), drop by drop, with constant stirring, until the liquid smells distinctly of ammonia. Stir for a few moments and then add a volume of strong ammonia (sp. gr. 0.90), equal to one third of the volume of the solution. Allow the solution to stand for some hours, and then filter off the magnesium ammonium phosphate, which should be distinctly crystalline in character. Wash the precipitate with dilute ammonia water, as prescribed above, until, finally, 3 cc. of the washings, after acidifying with nitric acid, show no evidence of chlorides. Test both filtrates for complete precipitation by adding a few cubic centimeters of magnesia mixture and allowing them to stand for some time.

Transfer the moist precipitate to a weighed porcelain or platinum crucible and ignite, using great care to raise the temperature slowly while drying the filter in the crucible, and to insure the ready access of oxygen during the combustion of the filter paper, thus guarding against a possible reduction of the phosphate, which would result in disastrous consequences both to the crucible, if of platinum, and the analysis. Do not raise the temperature above moderate redness until the precipitate is white. (Keep this precaution well in mind.) Ignite finally at the highest temperature of the Tirrill burner, and repeat the heating until the weight is constant. If the ignited precipitate is persistently discolored by particles of unburned carbon, moisten the mass with a drop or two of concentrated nitric acid and heat cautiously, finally igniting strongly. The acid will dissolve magnesium pyrophosphate from the surface of the particles of carbon, which will then burn away. Nitric acid also aids as an oxidizing agent in supplying oxygen for the combustion of the carbon.

From the weight of magnesium pyrophosphate (Mg_{2}P_{2}O_{7}) obtained, calculate the phosphoric anhydride (P_{2}O_{5}) in the sample of apatite.

[Note 1: The ionic change involved in the precipitation of the magnesium compound is

PO_{4}^{—-} + NH_{4}^{+} + Mg^{++} —> [MgNH_{4}PO_{4}].

The magnesium ammonium phosphate is readily dissolved by acids, even those which are no stronger than acetic acid. This is accounted for by the fact that two of the ions into which phosphoric acid may dissociate, the HPO_{4}^{—} or H_{2}PO_{4}^{-} ions, exhibit the characteristics of very weak acids, in that they show almost no tendency to dissociate further into H^{+} and PO_{4}^{—} ions. Consequently the ionic changes which occur when the magnesium ammonium phosphate is brought into contact with an acid may be typified by the reaction:

H^{+} + Mg^{++} + NH_{4}^{+} + PO_{4}^{—-} —> Mg^{++} + NH_{4}^{+} +
HPO_{4}^{—};

that is, the PO_{4}^{—} ions and the H^{+} ions lose their identity in the formation of the new ion, HPO_{4}^{—}, and this continues until the magnesium ammonium phosphate is entirely dissolved.]

[Note 2: During ignition the magnesium ammonium phosphate loses ammonia and water and is converted into magnesium pyrophosphate:

2MgNH_{4}PO_{4} —> Mg_{2}P_{2}O_{7} + 2NH_{3} + H_{2}O.

The precautions mentioned on pages 111 and 123 must be observed with great care during the ignition of this precipitate. The danger here lies in a possible reduction of the phosphate by the carbon of the filter paper, or by the ammonia evolved, which may act as a reducing agent. The phosphorus then attacks and injures a platinum crucible, and the determination is valueless.]

ANALYSIS OF LIMESTONE

Limestones vary widely in composition from a nearly pure marble through the dolomitic limestones, containing varying amounts of magnesium, to the impure varieties, which contain also ferrous and manganous carbonates and siliceous compounds in variable proportions. Many other minerals may be inclosed in limestones in small quantities, and an exact qualitative analysis will often show the presence of sulphides or sulphates, phosphates, and titanates, and the alkali or even the heavy metals. No attempt is made in the following procedures to provide a complete quantitative scheme which would take into account all of these constituents. Such a scheme for a complete analysis of a limestone may be found in Bulletin No. 700 of the United States Geological Survey. It is assumed that, for these practice determinations, a limestone is selected which contains only the more common constituents first enumerated above.

DETERMINATION OF MOISTURE

The determination of the amount of moisture in minerals or ores is often of great importance. Ores which have been exposed to the weather during shipment may have absorbed enough moisture to appreciably affect the results of analysis. Since it is essential that the seller and buyer should make their analyses upon comparable material, it is customary for each analyst to determine the moisture in the sample examined, and then to calculate the percentages of the various constituents with reference to a sample dried in the air, or at a temperature a little above 100°C., which, unless the ore has undergone chemical change because of the wetting, should be the same before and after shipment.

PROCEDURE.—Spread 25 grams of the powdered sample on a weighed watch-glass; weigh to the nearest 10 milligrams only and heat at 105°C.; weigh at intervals of an hour, after cooling in a desiccator, until the loss of weight after an hour's heating does not exceed 10 milligrams. It should be noted that a variation in weight of 10 milligrams in a total weight of 25 grams is no greater relatively than a variation of 0.1 milligram when the sample taken weighs 0.25 gram

DETERMINATION OF THE INSOLUBLE MATTER AND SILICA

PROCEDURE.—Weigh out two portions of the original powdered sample (not the dried sample), of about 5 grams each, into 250 cc. casseroles, and cover each with a watch-glass (Note 1). Pour over the powder 25 cc. of water, and then add 50 cc. of dilute hydrochloric acid (sp. gr. 1.12) in small portions, warming gently, until nothing further appears to dissolve (Note 2). Evaporate to dryness on the water bath. Pour over the residue a mixture of 5 cc. of water and 5 cc. of concentrated hydrochloric acid (sp. gr. 1.2) and again evaporate to dryness, and finally heat for at least an hour at a temperature of 110°C. Pour over this residue 50 cc. of dilute hydrochloric acid (one volume acid (sp. gr. 1.12) to five volumes water), and boil for about five minutes; then filter and wash twice with the dilute hydrochloric acid, and then with hot water until free from chlorides. Transfer the filter and contents to a porcelain crucible, dry carefully over a low flame, and ignite to constant weight. The residue represents the insoluble matter and the silica from any soluble silicates (Note 3).

Calculate the combined percentage of these in the limestone.

[Note 1: The relatively large weight (5 grams) taken for analysis insures greater accuracy in the determination of the ingredients which are present in small proportions, and is also more likely to be a representative sample of the material analyzed.]

[Note 2: It is plain that the amount of the insoluble residue and also its character will often depend upon the strength of acid used for solution of the limestone. It cannot, therefore, be regarded as representing any well-defined constituent, and its determination is essentially empirical.]

[Note 3: It is probable that some of the silicates present are wholly or partly decomposed by the acid, and the soluble silicic acid must be converted by evaporation to dryness, and heating, into white, insoluble silica. This change is not complete after one evaporation. The heating at a temperature somewhat higher than that of the water bath for a short time tends to leave the silica in the form of a powder, which promotes subsequent filtration. The siliceous residue is washed first with dilute acid to prevent hydrolytic changes, which would result in the formation of appreciable quantities of insoluble basic iron or aluminium salts on the filter when washing with hot water.

If it is desired to determine the percentage of silica separately, the ignited residue should be mixed in a platinum crucible with about six times its weight of anhydrous sodium carbonate, and the procedure given on page 151 should be followed. The filtrate from the silica is then

1 ... 15 16 17 18 19 20 21 22 23 ... 34
Go to page:

Free ebook «An Introductory Course of Quantitative Chemical Analysis by Henry P. Talbot (good short books .TXT) 📖» - read online now

Comments (0)

There are no comments yet. You can be the first!
Add a comment